Enantioselective Allylation of a,b-Unsaturated Aldehydes
COMMUNICATION
ˇ
[7] a) A. Kadlcꢀkovꢁ, R. Hrdina, I. Valterovꢁ, M. Kotora, Adv. Synth.
concentration effect on the ring-closing metathesis of acrylic
esters.[18]
ˇ
Catal. 2009, 351, 1279–1283; b) A. Kadlcꢀkovꢁ, M. Kotora, Mole-
cules 2009, 14, 2918–2926; c) R. Hrdina, F. Opekar, J. Roithovꢁ, M.
In conclusion, the easy preparation of (R,R)-1 and (R,S)-1
and their high catalytic activity enables the efficient allyla-
tion of a,b-unsaturated aldehydes to the corresponding ho-
moallyl alcohols to be carried out with high enantioselectivi-
ties of up to 99% ee. This method could serve as an alterna-
tive to the Keck allylation.[19]
[8] For previous results, see: a) R. Hrdina, I. G. Starꢁ, L. Dufkovꢁ, S.
ˇ
b) R. Hrdina, A. Kadlcꢀkovꢁ, I. Valterovꢁ, J. Hodacovꢁ, M. Kotora,
ˇ
ˇ
ˇ
ˇ
826; d) R. Hrdina, T. Boyd, I. Valterovꢁ, J. Hodacovꢁ, M. Kotora,
ˇ
´
Synlett 2008, 3141–3144; e) R. Hrdina, M. Dracꢀnsky, I. Valterovꢁ, J.
ˇ
ˇ
Experimental Section
[9] J. F. Traverse, Y. Zhao, A. H. Hoveyda, M. L. Snapper, Org. Lett.
[10] Q. Chai, C. Song, Z. Sun, Y. Ma, C. Ma, Y. Dai, M. B. Andrus, Tetra-
[11] a) G. Chelucci, N. Belmonte, M. Benaglia, L. Pignataro, Tetrahedron
[13] The calculations were performed by using the B97D method with 6-
31G* basis sets as implemented in Gaussian 09. All intermediates
and transition structures were characterized by using frequency
analysis. The solvation effect of tetrahydrofuran was approximated
by using a SCRF single-point calculation at the B97D/cc-pVTZ
level of theory for the optimized geometries in the gas phase by
using a simple polarizable continuum model calculation. The final
energy was corrected for the basis-set superposition error at the
B97D/cc-pVTZ level of theory.
Cinnamaldehyde (0.4 mmol, 53 mg), diisopropylethylamine (0.6 mmol,
104 mL, 77 mg), and allyltrichlorsilane (0.6 mmol, 85 mL, 51 mg) were
added to
a solution of bipyridine-N,N’-dioxide (R,R)-1 (0.004 mmol,
2 mg) in THF (1 mL) at À788C. The mixture was stirred for 1 h, then
quenched with brine (4 mL), and the organic layer was separated, dried
over MgSO4, and filtered on silica gel. The ee was determined by using
GC (HP-Chiral ß column, 30 mꢄ0.25 mm; oven: 808C for 1 min, then
18CminÀ1 to 1608C, 5 min): tR =71.09 min, tS =71.78 min; e.r.: 98.7:1.3
(97% ee).
Characterization data for 3a: 90% yield as determined by 1H NMR.
1H NMR (CDCl3, 300 MHz, 258C): d=7.25–7.42 (m, 5H; Ar), 6.64 (d, J-
3
ACHTUNGTRENNUNG
(H,H)=16 Hz, 1H; CH), 6.27 (dd, 3J=16, 6.3 Hz, 1H; CH), 5.84–5.92
(m, 1H; CH), 5.19–5.26 (m, 2H; CH2), 4.37–4.42 (m, 1H; CHO), 2.38–
2.50 (m, 2H; CH2), 2.05 (s, 1H; OH). The spectral characteristics of 3a
are in agreement with previously reported data.[17b]
[14] P. Hobza, K. Mꢆller-Dethlefs, Non-Covalent Interactions: Theory
and Experiments, RSC, London, 2010.
Acknowledgements
ˇ
[15] E. C. Lee, D. Kim, P. Jurecka, P. Tarakeshwar, P. Hobza, K. S. Kim,
The authors acknowledge financial support from grants 203/08/0350,
LC06070, MSM0021620857, Z40550506, and SVV 261205/2010. The au-
[17] a) A. de Fatima, R. A. Pilli, Tetrahedron Lett. 2003, 44, 8721–8724;
b) E. Sundby, L. Perk, T. Anthonsen, A. J. Aasen, T. V. Hansen, Tet-
ˇ
thors would like to thank Dr. Ivana Cꢀsarovꢁ for the X-ray analysis.
Keywords: allylation · asymmetric synthesis · lewis bases ·
organocatalysis · nitrogen oxides
[20] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasega-
wa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bear-
park, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko-
bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.
S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Po-
melli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzew-
ski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, ꢇ. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D.
J. Fox, Gaussian, Inc., Wallingford CT, 2009..
[3] a) N. Nakajima, M. Saito, M. Shiro, H. Hashimoto, J. Am. Chem.
2006, 1391–1401, and references therein.
[5] a) A. V. Malkov, M. Orsini, D. Pernazza, K. W. Muir, V. Langer, P.
ˇ
´
ˇ
´
ˇ
c) A. V. Malkov, P. Ramꢀrez-Lꢅpez, L. Biedermannovꢁ, L. Rulꢀsek,
ˇ
´
L. Dufkovꢁ, M. Kotora, F. Zhu, P. Kocovsky, J. Am. Chem. Soc.
2008, 130, 5441–5448.
ˇ
´
Received: June 1, 2010
Published online: July 20, 2010
Chem. Eur. J. 2010, 16, 9442 – 9445
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
9445