pubs.acs.org/joc
group antigens, bacterial cell wall, lipopolysaccharides, and
Regioselective One-Pot Protection of D-Glucosamine
chitin/chitosan.2c,3 The 3-O and 4-O positions of the glucos-
amine residues are typically involved in the recurring linear
assemblies as is the case in hyaluronic acid, chitin, and
heparan sulfate.4 The more decorated N-glycoproteins and
glycolipids have branching structures occupying not only
the 3-O and 4-O, but also the 6-O portions as well.5 The
reducing side attachments are frequently β-oriented, although
R-linkages are also common.
Ken-Lien Chang,† Medel Manuel L. Zulueta,†,§ Xin-An Lu,†
Yong-Qing Zhong,† and Shang-Cheng Hung*,†,‡
†Genomics Research Center, Academia Sinica, 128,
Section 2, Academia Road, Taipei 115, Taiwan,
‡Department of Applied Chemistry, National Chiao Tung
University, 1001, Ta Hsueh Road, Hsinchu 300, Taiwan, and
§Institute of Chemistry, University of the Philippines,
Diliman, Quezon City 1101, Philippines
Carbohydrate structure-activity relationship (SAR) studies
require well-defined molecules which may only be reasonably
acquired through chemical synthesis.6 Such preparation neces-
sitates the acquisition of properly protected monosaccharide
assembly units. Traditional protocols rely on independent
preparative routes and step-by-step protection-deprotection
schemes with focus on the careful differentiation of the multiple
hydroxyls of an unprotected starting material, often suffering
tedious workups and time-consuming purifications. To tackle
these problems and efficiently create a library of suitable
monosaccharide synthons for glycomics study, a trimethylsilyl
trifluoromethanesulfonate (TMSOTf)-mediated regioselective
one-pot protection strategy was recently developed by us.7
There, a variety of D-glucose derivatives with different protect-
ing group patterns was prepared from the simple per-O-tri-
methylsilylated glucopyranosides with anomeric fixed R-OMe
(1) and β-STol (2).
Received July 10, 2010
A highly regioselective one-pot transformation of 2-azido-
2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-D-glucopyranose
via sequential additions of various reagents was system-
atically studied, yielding the fully protected derivatives and
the 1-, 3-, 4-, as well as 6-alcohols, respectively.
In continuation of this effort, we disclose herein the
application of our novel approach on the anomeric nonfixed
D-glucosamine unit 3 to synthesize a series of building blocks
that include fully protected sugars and 1-, 3-, 4-, as well
as 6-alcohols. In this case, the azido group was selected to
mask the 2-C position of the glucosamine unit due to its dual
utility in forming either R- (by nonparticipating effect)8 or
β-glycosidic linkage (by nitrile solvent effect).9 Other amino
The chirality of the anomeric center along with the poly-
hydroxylated character of several monosaccharide units
has enabled Nature to generate carbohydrate polymers of
staggering complexity.1 The information embedded in these
structures that are exploited in living systems attracted keen
interest and fueled the advance of the emerging field of
glycomics.2 Among the widely distributed sugar components,
D-glucosamine and its N-acetylated and N-sulfonated deriva-
tives, are found in numerous biologically potent molecules
such as cell surface N-glycoproteins, proteoglycans (heparan
sulfate, heparin), hyaluronic acid, glycosphingolipids (Lewis
a/x), glycosylphosphatidylinositol (GPI) anchors, blood
(3) (a) Bryant, C. E.; Spring, D. R.; Gangloff, M.; Gay, N. J. Nat. Rev.
Microbiol. 2010, 8, 8–14. (b) Paulick, M. G.; Bertozzi, C. R. Biochemistry
2008, 47, 6991–7000. (c) Gandhi, N. S.; Mancera, R. L. Chem. Biol. Drug Des.
2008, 72, 455–482. (d) Wang, L.-X.; Huang, W. Curr. Opin. Chem. Biol. 2009,
13, 592–600. (e) Taube, S.; Jiang, M.; Wobus, C. E. Viruses 2010, 2, 1011–
1049.
(4) (a) Esko, J. D.; Lindahl, U. J. Clin. Invest. 2001, 108, 169–173. (b) Liu,
H.; Zhang, Z.; Linhardt, R. J. Nat. Prod. Rep. 2009, 26, 313–321.
(5) (a) Nyame, A. K.; Kawar, Z. S.; Cummings, R. D. Arch. Biochem.
Biophys. 2004, 426, 182–200. (b) Hokke, C. H.; Deelder, A. M.; Hoffmann,
K. F.; Wuhrer, M. Exp. Parasitol. 2007, 117, 275–283.
(6) (a) Banoub, J. Chem. Rev. 1992, 92, 1167–1195. (b) Bongat, A. F. G.;
Demchenko, A. V. Carbohydr. Res. 2007, 342, 374–406.
(7) (a) Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang,
Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Nature 2007, 446, 896–899.
(b) Wang, C.-C.; Kulkarni, S. S.; Lee, J.-C.; Luo, S.-Y.; Hung, S.-C. Nat.
Protoc. 2008, 3, 97–113.
(8) (a) Hung, S.-C.; Thopate, S. R.; Chi, F.-C.; Chang, S.-W.; Lee, J.-C.;
Wang, C.-C.; Wen, Y.-S. J. Am. Chem. Soc. 2001, 123, 3153–3154. (b) Lee,
C.-J.; Lu, X.-A.; Kulkarni, S. S.; Wen, Y.-S.; Hung, S.-C. J. Am. Chem. Soc.
2004, 126, 476–477. (c) Lee, J.-C.; Chang, S.-W.; Liao, C.-C.; Chi, F.-C.;
Chen, C.-S.; Wen, Y.-S.; Wang, C.-C.; Kulkarni, S. S.; Puranik, R.; Liu, Y.-
H.; Hung, S.-C. Chem.;Eur. J. 2004, 10, 399–415. (d) Lu, L.-D.; Shie, C.-R.;
Kulkarni, S. S.; Pan, G.-R.; Lu, X.-A.; Hung, S.-C. Org. Lett. 2006, 8, 5995–
5998.
(1) Voit, B.; Appelhans, D. Macromol. Chem. Phys. 2010, 211, 727–735.
(2) (a) Shriver, Z.; Raguram, S.; Sasisekharan, R. Nat. Rev. Drug
Discovery 2004, 3, 863–873. (b) Paulson, J. C.; Blixt, O.; Collins, B. E. Nat.
Chem. Biol. 2006, 2, 238–248. (c) Varki, A.; Cummings, D. C.; Esko, J. D.;
Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E. In
Essentials of Glycobiology, 2nd ed.; Cold Spring Habor Laboratory Press:
New York, 2009. (d) Krishnamoorthy, L.; Mahal, L. K. ACS Chem. Biol.
2009, 4, 715–732. (e) Hyun, J.-A.; Kronewitter, S. L.; Leoz, M. L.; Lebrilla,
C. B. Curr. Opin. Chem. Biol. 2009, 13, 601–607. (f) Zhang, H.-L.; Ma, Y.;
Sun, X.-L. Med. Res. Rev. 2010, 30, 270–289.
7424 J. Org. Chem. 2010, 75, 7424–7427
Published on Web 10/11/2010
DOI: 10.1021/jo101320r
r
2010 American Chemical Society