A. Reynolds et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5799–5802
5801
offer no common insight into the possible ligand-based mecha-
nism of action of the compounds presented here. Using a number
of the standard properties used in chemoinformatics, no noticeable
trends were observed, once again, presumably due to the small
number of ligands available. We are currently developing a com-
parative model of the human TSPO, which will provide a much
clearer picture of the intermolecular interactions of this class of
compounds with the protein.
In summary, we have synthesized four new pyrazolo[1,5-
a]pyrimidine acetamides substituted with various length alkyl
ethers at the 40-position of the phenyl ring. All of these compounds
displayed high affinity for the TSPO with complete selectivity over
the CBR as well as a large range CNS receptors and transporters.
Compounds 9, 10, and 11 represent the most potent modulators
of steroidogenesis within this class to date and have potential ther-
apeutic applications as anxiolytics or neuroprotective agents.
Figure 1. Results of steroidogenesis assay. Complete details can be found in the
Supplementary data.
40-phenyl methyl ether derivative 5 and 40-phenyl ethyl ether
derivative 7 showed no effect on steroidogenesis in the same assay.
Compounds 9, 10, and 11, corresponding to the propyl, butyl and
propargyl ethers, respectively, displayed the greatest increase in
pregnenolone biosynthesis (140–175% above baseline) of any high
affinity TSPO ligand within this class assessed using this assay.
In an effort to understand the structural dependence on the rel-
ative activities of the TSPO ligands 5, 7–11, it was decided to deter-
mine the likely pharmacophore hypothesis responsible for activity.
A number of ligands with high binding affinity for the TSPO have
been previously reported,15,16 and these were used in the construc-
tion of the initial hypotheses.
Acknowledgments
Ki determinations for targets included in the SI were generously
provided by the National Institute of Mental Health0s Psychoactive
Drug Screening Program, Contract #NO1MH32004 (NIMH PDSP).
The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the Uni-
versity of North Carolina at Chapel Hill and Project Officer Jamie
Driscol at NIMH, Bethesda MD, USA. For experimental details
Supplementary data
A collection of 44 compounds, representing a variety of classes of
TSPO ligands, that are available in our laboratory were built using
MAESTRO 9.0,31 and energy minimized using the conjugate gradient
method as implemented in Macromodel,32 with a convergence crite-
rion of 0.05 kcal Aꢁ1, with the OPLS 2005 potential. Solvation effects
were modeled using a continuum field, with a dielectric constant of
1.0. Each molecule then underwent a conformational analysis,
retaining only those conformers with a relative energy value within
10 kcal molꢁ1 of the minimized parent molecule.
Supplementary data associated with this article can be found, in
References and notes
1. Papadopoulos, V.; Baraldi, M.; Guilarte, T. R.; Knudsen, T. B.; Lacapere, J.-J.;
Lindemann, P.; Norenberg, M. D.; Nutt, D.; Weizman, A.; Zhang, M.-R.; Gavish,
M. Trends Pharmacol. Sci. 2006, 27, 402.
2. Verma, A.; Snyder, S. H. Annu. Rev. Pharmacol. Toxicol. 1989, 29, 307.
3. Gavish, M.; Katz, Y.; Bar-Ami, S.; Weizman, R. J. Neurochem. 1992, 58, 1589.
4. Gavish, M.; Bachman, I.; Shoukrun, R.; Katz, Y.; Veenman, L.; Weisinger, G.;
Weizman, A. Pharmacol. Rev. 1999, 51, 629.
Our best hypothesis using PHASE33 supports the recent findings
of Tuccinardi et al.34 AHRRR, where A = hydrogen bond acceptor,
H = hydrophobic group, and R = ring system (Fig. 2).
5. Beurdeley-Thomas, A.; Miccoli, L.; Oudard, S.; Dutrillaux, B.; Poupon, M. F. J.
Neurooncol. 2000, 46, 45.
6. Anholt, R. R.; Pedersen, P. L.; De Souza, E. B.; Snyder, S. H. J. Biol. Chem. 1986,
261, 576.
7. McEnery, M. W.; Snowman, A. M.; Trifiletti, R. R.; Snyder, S. H. Proc. Natl. Acad.
Sci. U.S.A. 1992, 89, 3170.
8. Alho, H.; Varga, V.; Krueger, K. E. Cell Growth Differ. 1994, 5, 1005.
9. Chelli, B.; Lena, A.; Vanacore, R.; Pozzo, E. D.; Costa, B.; Rossi, L.; Salvetti, A.;
Scatena, F.; Ceruti, S.; Abbracchio, M. P.; Gremigni, V.; Martini, C. Biochem.
Pharmacol. 2004, 68, 125.
Given the small number of ligands available in this study it was
not possible to determine the structural reasons for the observed
differences in binding affinity and functional activity of the ligands
involved using the common pharmacophore structure. The results
of the in silico property prediction35 (see Supplementary data) also
10. Costa, E.; Auta, J.; Guidotti, A.; Korneyev, A.; Romeo, E. J. Steroid Biochem. Mol.
Biol. 1994, 49, 385.
11. Papadopoulos, V.; Amri, H.; Boujrad, N.; Cascio, C.; Culty, M.; Garnier, M.;
Hardwick, M.; Li, H.; Vidic, B.; Brown, A. S.; Reversa, J. L.; Bernassau, J. M.;
Drieu, K. Steroids 1997, 62, 21.
12. Krueger, K. E.; Papadopoulos, V. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 211.
13. Taketani, S.; Kohno, H.; Furukawa, T.; Tokunaga, R. J. Biochem. (Tokyo) 1995,
117, 875.
14. Zavala, F. Pharmacol. Ther. 1997, 75, 199.
15. James, M. L.; Selleri, S.; Kassiou, M. Curr. Med. Chem. 2006, 13, 1991.
16. Scarf, A. M.; Ittner, L. M.; Kassiou, M. J. Med. Chem. 2009, 52, 581.
17. Kita, A.; Furukawa, K.; Kita, A.; Furukawa, K. Pharmacol., Biochem. Behav. 2008,
89, 171.
18. Rupprecht, R.; Rammes, G.; Eser, D.; Baghai Thomas, C.; Schule, C.; Nothdurfter,
C.; Troxler, T.; Gentsch, C.; Kalkman Hans, O.; Chaperon, F.; Uzunov, V.;
McAllister Kevin, H.; Bertaina-Anglade, V.; La Rochelle Christophe, D.; Tuerck,
D.; Floesser, A.; Kiese, B.; Schumacher, M.; Landgraf, R.; Holsboer, F.; Kucher, K.
Science 2009, 325, 490.
19. Taliani, S.; Da Settimo, F.; Da Pozzo, E.; Chelli, B.; Martini, C. Curr. Med. Chem.
2009, 16, 3359.
20. Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Costa, B.;
Martini, C. Bioorg. Med. Chem. 2001, 9, 2661.
21. James, M. L.; Fulton, R. R.; Henderson, D. J.; Eberl, S.; Meikle, S. R.; Thomson, S.;
Allan, R. D.; Dollé, F.; Fulham, M. J.; Kassiou, M. Bioorg. Med. Chem. 2005, 13,
6188.
Figure 2. Overlay of compounds 8, 9, and 10 illustrating the common pharmaco-
phore hypothesis (AHRRR). Pink sphere—hydrogen bond acceptor, green sphere—
hydrophobic group, tan hoop—ring system.