5936 Organometallics 2010, 29, 5936–5940
DOI: 10.1021/om100722f
Iridium-Catalyzed Anti-Stereocontrolled Asymmetric Ring Opening of
Azabicyclic Alkenes with Primary Aromatic Amines
Dingqiao Yang,*,† Yuhua Long,*,† Yujuan Wu,† Xiongjun Zuo,† Qingqiang Tu,†
Shai Fang,† Lasheng Jiang,† Sanyong Wang,‡ and Chunrong Li‡
†School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People’s
Republic of China, and ‡Guangdong Food Industry Institute, Guangzhou 510308, People’s Republic of China
Received July 24, 2010
A novel iridium-catalyzed ring-opening reaction of azabicyclic alkenes with a variety of primary
aromatic amines is reported, which afforded the corresponding 1,2-trans-diamine derivatives in high
yields (up to 96%) with excellent enantioselectivities (up to 97% ee) under relatively mild conditions. The
trans configuration of product 2b was confirmed by X-ray crystallography.
Transition-metal-catalyzed asymmetric ring-opening (ARO)
reactions have been demonstrated to be useful methods for the
synthesis of chiral building blocks.1 Many ARO reactions offer
excellent enantioselectivities, such as the palladium-catalyzed
ARO reactions of organoboronic acids,2 the nickel-catalyzed
conjugate addition of terminal alkynes,3 the copper-cata-
lyzed ARO reactions of Grignard reagents4 and aluminum
reagents,5 the rhodium-catalyzed ARO reactions of phenol,6
and various metal-catalyzed ARO reactions of dialkylzincs.7
Those reactions provide potential promising methods to
form carbon-nitrogen bonds through the addition of nitro-
gen-based nucleophiles to the azabicyclic alkenes, offering
facile and efficient synthetic routes to 1,2-trans-diamino
derivatives. Compounds possessing a 1,2-trans-diamino
skeleton have many potential applications in both chemistry
and medicine.8 In addition, the catalytic addition of amines
to unsaturated bonds has attracted great attention in organic
synthesis because of its high atom efficiency.9 Recently,
ARO of oxa- and azabicyclic alkenes with nitrogen-based
nucleophiles catalyzed by rhodium and iridium com-
plexes has been reported by Lautens et al.10a-e and our
laboratory,10f-k respectively. Herein, we report the exten-
sion of this method to asymmetric ring-opening reactions of the
less reactive azabicyclic alkenes 1a-c with primary aromatic
amines to afford the corresponding cyclohexyl 1,2-trans-
diamine derivatives in good to excellent enantioselectivities in
the presence of iridium catalysts.
*To whom correspondence should be addressed. E-mail: yangdq@scnu.
edu.cn (D.Y.); yuhualong68@hotmail.com (Y.L.). Tel: þ86 20 39310068.
Fax: þ86 20 85210087.
(1) For example, see: (a) Lautens, M.; Fagnou, K.; Hiebert, S. Acc.
Chem. Res. 2003, 36, 48–58. (b) Nomura, N.; Komiyama, S.; Kasugai, H.;
Saba, M. J. Am. Chem. Soc. 2008, 130, 812–814. (c) Alexakis, A.; Hajjaji,
S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393–3395. (d) Polet, D.;
Alexakis, A. Org. Lett. 2005, 7, 1621–1624. (e) Kanayama, T.; Yoshida, K.;
Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197–6201.
(f) Woodward, S. Angew. Chem., Int. Ed. 2005, 44, 5560–5562. (g) Hayashi,
T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829–2844. (h) Johnson, B. M.;
Chang, P. T. L. Anal. Profiles Drug Subst. Excipients 1996, 24, 443–486.
(i) Snyder, S. E.; Aviles-Garay, F. A.; Chakraborti, R.; Nichols, D. E.; Watts,
V. J.; Mailman, R. B. J. Med. Chem. 1995, 38, 2395–2409. (j) Kamal, A.;
Gayatri, N. L. Tetrahedron Lett. 1996, 37, 3359–3362. (k) Kim, K.; Guo, Y.;
Sulikowski, G. A. J. Org. Chem. 1995, 60, 6866–6871. (l) Perrone, R.;
Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.;
Olgiati, V.; Ghiglieri, A.; Govoni, S. J. Med. Chem. 1995, 38, 942–949.
(m) Lautens, M.; Fagnou, K.; Taylor, M.; Rovis, T. J. Organomet. Chem.
2001, 624, 259–270.
(8) (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem.
Rev. 2000, 100, 2159–2231. (b) Lucet, D.; Le Gall, T.; Mioskowski, C.
Angew. Chem., Int. Ed. 1998, 37, 2580–2627. (c) Bennani, Y. L.; Hanessian,
S. Chem. Rev. 1997, 97, 3161–3195. (d) Hoppe, D.; Hense, T. Angew.
Chem., Int. Ed. 1997, 36, 2282–2316. (e) Costello, G. F.; James, R.; Shaw,
J. S.; Slater, A. M.; Stutchbury, N. C. J. J. Med. Chem. 1991, 34, 181–189.
(f) Yoshioka, H.; Aoki, T.; Goko, H.; Nakatsu, K.; Noda, T.; Sakakibara, H.;
Take, T.; Nagata, A.; Abe, J.; Wakamiva, T.; Shiba, T.; Kaneko, T. Tetra-
hedron Lett. 1971, 23, 2043–2046.
(2) (a) Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695–3698.
(b) Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10,
3689–3692.
(3) (a) Rayabarapu, D. K.; Chiou, C.-F.; Cheng, C.-H. Org. Lett.
2002, 4, 1679–1682. (b) Rayabarapu, D. K.; Cheng, C.-H. Acc. Chem. Res.
2007, 40, 971–983. (c) Rayabarapu, D. K.; Cheng, C.-H. Chem. Eur. J. 2003,
9, 3164–3169.
(9) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
ꢀ
(4) (a) Arrayas., R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2003, 5,
(10) (a) Cho, Y.-H.; Zunic, V.; Senboku, H.; Olsen, M.; Lautens, M.
J. Am. Chem. Soc. 2006, 128, 6837–6846. (b) Lautens, M.; Fagnou, K. J.
Am. Chem. Soc. 2001, 123, 7170–7171. (c) Lautens, M.; Fagnou, K.; Zunic,
V. Org. Lett. 2002, 4, 3465–3468. (d) Lautens, M.; Fagnou, K.; Yang, D.-Q.
J. Am. Chem. Soc. 2003, 125, 14884–14892. (e) Dockendorff, C.; Jin, S.;
Olsen, M.; Lautens, M.; Coupal, M.; Hodzic, L.; Spear, N.; Payza, K.;
Walpole, C.; Tomaszewski, M. J. Bioorg. Med. Chem. Lett. 2009, 19, 1228–
1232. (f) Yang, D.-Q.; Long, Y.-H.; Wang, H.; Zhang, Z.-M. Org. Lett. 2008,
10, 4723–4726. (g) Yang, D.-Q.; Hu, P.; Long, Y.-H.; Wu, Y.-J.; Zeng, H.-P.;
Wang, H.; Zuo, X.-J. Beilstein J. Org. Chem. 2009, 5, No. 53. (h) Long,
Y.-H.; Yang, D.-Q.; Zeng, H.-P.; Xie, L.; Wu, L.-H; Mo, H.-H.; Zuo,
X.-J. Chin. J. Chem. 2010, 28, 235–242. (i) Xie, L.; Yang, D.-Q.; Zhao,
S.-Q.; Wang, H.; Liang, L.-H.; Luo, R.-S. Chin. Chem. Lett. 2007, 18, 127–
129. (j) Long, Y.-H.; Zhao, S.-Q.; Zeng, H.-P.; Yang, D.-Q. Catal. Lett.
2010, 138, 124–133. (k) Yang, D.-Q.; Long, Y.-H.; Zhang, J.-F.; Zeng, H.-P.;
Wang, S.-Y.; Li, C.-R. Organometallics 2010, 29, 3477–3480.
1333–1336. (b) Zhang, W.; Wang, L.-X.; Shi, W.-J.; Zhou, Q.-L. J. Org.
ꢀ
Chem. 2005, 70, 3734–3736. (c) Arrayas., R. G.; Cabrera, S.; Carretero, J. C.
ꢀ
Org. Lett. 2005, 7, 219–221. (d) Arrayas., R. G.; Cabrera, S.; Carretero, J. C.
Synthesis 2006, 7, 1205–1219.
(5) Millet, R.; Bernardez, L.; Palais, L.; Alexakis, A. Tetrahedron
Lett. 2009, 50, 3474–3477.
(6) (a) Lautens, M.; Fagnou, K.; Taylor, M. Org. Lett. 2000, 2, 1677–
1679. (b) Han, Y.-F.; Yang, D.-Q.; Liu, E.-C.; Dong, J.-X. Chin. Chem. Lett.
2006, 17, 296–298.
(7) (a) Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A..;
Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703–2705.
(b) Nishimura, T.; Tsurumaki, E.; Kawamoto, T.; Guo, X.-X.; Hayashi, T.
Org. Lett. 2008, 10, 4057–4060. (c) Imamoto, T; Saitoh, Y.; Koide, A.;
Ogura, T.; Yoshida, K. Angew. Chem., Int. Ed. 2007, 46, 8636–8639.
(d) Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437–1447.
r
pubs.acs.org/Organometallics
Published on Web 10/25/2010
2010 American Chemical Society