8078 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 22
Caporale et al.
Biological Activity. Human embryonic kidney (HEK293) cells
stably transfected with recombinant PTHR1 (HEK293/C21 cell
line) were used.56 The cellular cAMP response element (CRE) of
luciferase was transfected using the CRE-Luc plasmid. HEK293/
C21 cells were cultured at 37 °C in DMEM supplemented with 10%
fetal bovine serum in a humidified atmosphere of 95% air and 5%
CO2. The cells were seeded at 105 cells/well in 24-well, collagene-
coated plates, and on the following day, they were treated with
FuGENE 6 transfection reagent (1 μL/well), CRE-Luc plasmid
(0.2 μg/well) in 0.5 mL/well Opti-Mem I, serum-free medium,
according to the manufacturer’s recommended procedure.
(6) Hurevich, M.; Tal-Gan, Y.; Klein, S.; Barda, Y.; Levitzki, A.;
Gilon, C. Novel Method for the Synthesis of Urea Backbone Cyclic
Peptides Using New Alloc-protected Glycine Building Units.
J. Pept. Sci. 2010, 16, 178–185.
(7) Adessi, C.; Soto, C. Converting a Peptide into a Drug: Strategies to
Improve Stability and Bioavailability. Curr. Med. Chem. 2002, 9,
963–978.
(8) Craik, D. J. Seamless Proteins Tie Up Their Loose Ends. Science
2006, 311, 1563–1564.
(9) Clark, R. J.; Jensen, J.; Nevin, S. T.; Callaghan, B. P.; Adams, D. J.;
Craik, D. J. The Engineering of an Orally Active Conotoxin for the
Treatment of Neuropathic Pain. Angew. Chem. Int. Ed. 2010, 49,
6545–6548.
Luciferase Assay. About 18 h after CRE-Luc plasmid trans-
fection, the cells were rinsed with PBS, and the transfection
medium was replaced with 225 μL/well DMEM. Aliquots of the
peptide solutions at different concentrations in PBS supplemented
with 0.1% bovine serum albumin were then added to the wells and
incubated at 37 °C for 4.5 h. After this time, the medium was
aspirated, and the cells were lyzed by gentle shaking with 200 μL/
well passive lysis buffer. The cells were transferred to labeled low-
binding Eppendorf tubes and centrifuged for 2 min, and then,
80 μL/tube of supernatant was transferred into individual sample
glass tubes. The luciferase activity was measured using a Lumat LB
9507 luminometer (EG&G Berthold). All the CRE-Luc experi-
ments were carried out in triplicate. Calculations and data analysis
were performed using nonlinear regression.
(10) Blackwell, H. E.; Grubbs, R. H. Highly Efficient Synthesis of
Covalently Cross-linked Peptide Helices by Ring-closing Metath-
esis. Angew. Chem., Int. Ed. 1998, 37, 3281–3284.
(11) Illesinghe, J.; Guo, C. X.; Garland, R.; Ahmed, A.; van Lierop, B.;
Elaridi, J.; Jackson, W. R.; Robinson, A. J. Metathesis Assisted
Synthesis of Cyclic Peptides. Chem. Commun. 2009, 295–297.
(12) Reichwein, J. F.; Versluis, C.; Liskamp, R. M. Synthesis of Cyclic
Peptides by Ring-closing Metathesis. J. Org. Chem. 2000, 65, 6187–
6195.
(13) Blackwell, H. E.; Sadowsky, J. D.; Howard, R. J.; Sampson, J. N.;
Chao, J. A.; Steinmetz, W. E.; O’Leary, D. J.; Grubbs, R. H. Ring-
closing Metathesis of Olefinic Peptides: Design, Synthesis, and
Structural Characterization of Macrocyclic Helical Peptides.
J. Org. Chem. 2001, 66, 5291–5302.
(14) Le Chevalier Isaad, A.; Papini, A. M.; Chorev, M.; Rovero, P. Side-
chain-to-side-chain Cyclization by Click Reaction. J. Pept. Sci.
2009, 15, 451–454.
(15) Cantel, S.; Le Chevalier Isaad, A.; Scrima, M.; Levy, J. J.; Di-
Marchi, R. D.; Rovero, P.; Halperin, J. A.; D’Ursi, A. M.; Papini,
A. M.; Chorev, M. Synthesis and Conformational Analysis of a
Cyclic Peptide Obtained via i to iþ4 Intramolecular Side-chain-to-
side-chain Azide-alkyne 1,3-Dipolar Cycloaddition. J. Org. Chem.
2008, 73, 5663–5674.
(16) Siedlecka, M.; Goch, G.; Ejchart, A.; Sticht, H.; Bierzynski, A.
R-Helix Nucleation by a Calcium-binding Peptide Loop. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 903–908.
(17) Yang, J. X.; Zhao, K.; Gong, Y.-X.; Vologodskii, A.; Kallenbach,
N. R. R-Helix Nucleation Constant in Copolypeptides of Alanine
and Ornithine or Lysine. J. Am. Chem. Soc. 1998, 120, 10646–
10652.
Acknowledgment. We thank Dr. Thomas Burgemeister
(University of Regensburg, Germany), Prof. Stefano Mammi,
and the team of the Magnetic Resonance Laboratory CNR-
ICB at the University of Padova for their support during the
NMR experiments. We are grateful to Dr. Barbara Biondi
(University of Padova) for her kind help in mass analysis and to
Prof. Stefano Moro and the Molecular Modeling Section of the
Department of Pharmaceutical Sciences (Univeristy of Padova)
for computational support. We acknowledge Sandhya Sharma
for her kind help in the biological tests carried out at the
Department of Physiology of the Tufts University School of
Medicine, Boston. This work was partly supported by the
Deutsche Forschungsgemeinschaft (DFG Grant CA296) and
by the Italian Ministry of Education and University.
€
(18) Juppner, H.; Abou-Samra, A.-B.; Freeman, M.; Kong, X.-F.;
Schipani, E.; Richards, J.; Kolakowski, L. F., Jr.; Hock, J.; Potts,
J. T., Jr.; Kronenberg, H. M.; Segre, G. V. A G Protein-linked
Receptor for Parathyroid Hormone and Parathyroid Hormone-
related Peptide. Science 1991, 254, 1024–1026.
€
(19) Gardella, T. J.; Juppner, H. Interaction of PTH and PTHrP with
their Receptors. Rev. Endocr. Metab. Disord. 2000, 317–329.
(20) Tregear, G. W.; Van Rietschoten, J.; Greene, E.; Keutmann, H. T.;
Niall, H. D.; Reit, B.; Parsons, J. A.; Potts, J. T., Jr. Bovine
Parathyroid Hormone: Minimum Chain Length of Synthetic Pep-
tide Required for Biological Activity. Endocrinology 1973, 93,
1349–1353.
(21) Neer, R. M.; Arnaud, C. D.; Zanchetta, J. R.; Prince, R.; Gaich,
G. A.; Reginster, J. Y.; Hodsman, A. B.; Eriksen, E. F.;
Ish-Shalom, S.; Genant, H. K.; Wang, O.; Mitlak, B. H. Effect of
Parathyroid Hormone (1-34) on Fractures and Bone Mineral
Density in Postmenopausal Women with Osteoporosis. N. Engl.
J. Med. 2001, 344, 1434–1441.
Supporting Information Available: Schemes of the peptide
syntheses, analytical HPLC profiles of the purified peptides,
degradation data of cyclopeptide 3 at pH 8 at 25 and 37 °C,
tables of the chemical shifts of the peptides and of the random
coil CR-H protons used to obtain the CSI patterns, Ramachandran
plots of the 10 lower energy structures for each peptide, and
summary of the cross-peaks found in the ROESY spectra. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(22) Tashjian, A. H., Jr.; Gagel, R. F. Teriparatide [Human PTH-
(1-34)]: 2.5 Years of Experience on the Use and Safety of the
Drug for the Treatment of Osteoporosis. J. Bone Miner. Res. 2006,
21, 354–365.
References
(1) Hruby, V. J. Designing Peptide Receptor Agonists and Antago-
nists. Nat. Rev. 2002, 1, 847–858.
(23) Bukata, S. V.; Puzas, J. E. Orthopedic Uses of Teriparatide. Curr.
(2) Vagner, J.; Qu, H.; Hruby, V. J. Peptidomimetics, a Synthetic Tool
of Drug Discovery. Curr. Opin. Chem. Biol. 2008, 12, 292–296.
(3) Li, P.; Roller, P. P.; Xu, J. Current Synthetic Approaches to
Peptide and Peptidomimetic Cyclization. Curr. Org. Chem. 2002,
6, 411–440.
Osteoporosis Rep. 2010, 8, 28–33.
(24) Luck, M. D.; Carter, P. H.; Gardella, T. J. The (1-14) Fragment of
Parathyroid Hormone (PTH) Activates Intact and Amino-terminally
Truncated PTH-1 Receptors. Mol. Endocrinol. 1999, 13, 670–680.
(25) Shimizu, M.; Potts, J. T., Jr.; Gardella, T. J. Minimization of
Parathyroid Hormone. J. Biol. Chem. 2000, 275, 21836–21843.
(26) Schievano, E.; Mammi, S.; Silvestri, L.; Behar, V.; Rosenblatt, M.;
Chorev, M.; Peggion, E. Conformational Studies of Paratathyroid
Hormone (PTH)/PTH-related Protein (PTHrp) Chimeric Peptides.
Biopolymers 2000, 54, 429–447.
(4) Hess, S.; Linde, Y.; Ovadia, O.; Safrai, E.; Shalev, D. E.; Swed, A.;
Halbfinger, E.; Lapidot, T.; Winkler, I.; Gabinet, Y.; Faier, A.;
Yarden, D.; Xiang, Z.; Portillo, P. F.; Haskell-Luevano, C.; Gilon,
C.; Hoffman, A. Backbone Cyclic Peptidomimetic Melanocortin-4
Receptor Agonist as Novel Orally Administrated Drug Lead for
Treating Obesity. J. Med. Chem. 2008, 51, 1026–1034.
(27) Jin, L.; Briggs, S. L.; Chandrasekhar, S.; Chirgadze, N. Y.; Clawson,
ꢀ
(5) Harrison, R. S.; Shepherd, N. E.; Hoang, H. N.; Ruiz-Gomez, G.;
D. K.; Schevitz, R. W.; Smiley, D. L.; Tashjian, A. H.; Zhang, F.
˚
Hill, T. A.; Driver, R. W.; Desai, V. S.; Young, P. R.; Abbenante,
G.; Fairlie, D. P. Downsizing Human, Bacterial, and Viral Proteins
to Short Water-stable Alpha Helices That Maintain Biological
Potency. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11686–11691.
Cristal Structure of Human Parathyroid Hormone 1-34 at 0.9 A
Resolution. J. Biol. Chem. 2000, 275, 27238–27244.
(28) Shimizu, N.; Guo, J.; Gardella, T. J. Parathyroid Hormone
(PTH)-(1-14) and -(1-11) Analogs Conformationally Constrained