MICHAEL ADDITION REACTION OF THIOACETIC ACID
2083
195.9 ppm; IR (neat): ν 1671 (CO) cm−1; MS (70 eV), m/e: 290 (M+), 105 (100%). Anal.
Calcd for C15H14O2S2: C, 62.04; H, 4.86. Found: C, 62.02; H, 4.84%.
1
Diethyl 2-(acetylthio(phenyl)methyl)malonate (10). H NMR (CDCl3,
TMS): δ 1.02 (t, 3 H, J = 7.0 Hz), 1.22 (t, 3 H, J = 7.0 Hz), 2.24 (s, 3 H), 3.94–4.02 (m,
3 H), 4.17 (q, 2 H, J = 7.0 Hz), 5.31 (d, 1 H, J = 10 Hz), 7.18–7.35 (m, 5 H) ppm; 13C
NMR (CDCl3, TMS): δ 13.7, 13.9, 30.3, 45.9, 57.1, 61.7, 61.8, 127.8, 128.1, 128.5, 128.8,
139.3, 166.3, 166.8, 192.7 ppm; IR (neat): ν 1722, 1718, 1686 (CO) cm−1; MS (70 eV),
m/e: 325 (M++1), 249 (100%). Anal. Calcd for C16H20O5S: C, 59.24; H, 6.21. Found: C,
59.21; H, 6.19%.
1
Methyl 3-(acetylthio)propanoate (11). H NMR (CDCl3, TMS): δ 2.31 (s, 3
H), 2.61 (t, 2 H, J = 7.0 Hz), 3.08 (t, 2 H, J = 7.0 Hz), 3.67 (s, 3 H) ppm; 13C NMR
(CDCl3, TMS): δ 24.2, 30.5, 34.1, 51.8, 172.1, 195.5 ppm; IR (neat): ν 1688 (CO) cm−1
;
MS (70 eV), m/e: 162 (M+), 43 (100%). Anal. Calcd for C6H10O3S: C, 44.43; H, 6.21.
Found: C, 44.42; H, 6.18%.
1
Butyl 3-(acetylthio)propanoate (12). H NMR (CDCl3, TMS): δ 0.90 (t, 3 H,
J = 7.3 Hz), 1.28–1.42 (m, 2 H), 1.52–1.67 (m, 2 H), 2.31 (s, 3 H), 2.59 (t, 2 H, J =
7.0 Hz), 3.08 (t, 2 H, J = 7.0 Hz), 4.06 (t, 2 H, J = 6.8 Hz) ppm; 13C NMR (CDCl3, TMS):
δ 13.7, 19.0, 24.2, 30.5, 34.3, 64.6, 171.7, 195.6 ppm; IR (neat): ν 1678, 1685 (CO) cm−1
;
MS (70 eV), m/e: 204 (M+), 43 (100%). Anal. Calcd for C9H16O3S: C, 52.91; H, 7.89.
Found: C, 52.87; H, 7.85%.
REFERENCES
1. P. Perlmutter and J. E. Baldwin, Conjugate Addition Reaction in Organic Synthesis (Pergamon
Press, Oxford, UK, 1992).
2. B. M. Trost and D. E. Keeley, J. Org. Chem., 40, 2013 (1975).
3. P. Bakuzia and M. L. F. Bakuzis, J. Org. Chem., 46, 235 (1981).
4. J. P. Cherkauskas, T. Cohen, J. Org. Chem., 57, 6 (1992).
5. (a) J. J. R. F. da Silva and R. J. P. Williams, The Biological Chemistry of the Elements (Oxford
University Press, New York, 2001); (b) R. A. Sheldon, Chirotechnologies: Industrial Synthesis
of Optically Active Compounds (Dekker, New York, 1993).
6. (a) For examples of organometallics catalyzed Michael addition thiols, see: M. Zielinska-Błajet,
R. Kowalczyk, and J. Skarzewski, Tetrahedron, 61, 5235 (2005); (b) E. Emori, T. Arai, H. Sasai,
and M. Shibasaki, J. Am. Chem. Soc., 120, 4043 (1998); (c) K. Nishimura, M. Ono, Y. Nagaoka,
and K. Tomioka, J. Am. Chem. Soc., 119, 12974 (1997); (d) S. K. Garg, R. Kumar, and A. K.
Chakraborti, Tetrahedron Lett., 46, 1721 (2005).
7. (a) For examples of organocatalyzed Michael addition thiols, see: H. Hiemstra and H. Wynberg,
J. Am. Chem. Soc., 103, 417 (1981); (b) S. Colonna, A. Re, and H. Wynberg, J. Chem. Soc.,
Perkin Trans. 1, 547 (1981); (c) K. Suzuki, A. Ikegawa, and T. Mukaiyama, Bull. Chem. Soc.
Jpn., 55, 3277 (1982); (d) P. Mcdaid, Y.-G. Chen, and L. Deng, Angew. Chem., Int. Ed., 41, 338
(2002); (e) T. C. Wabnitz and J. B. Spencer, Org. Lett., 5, 2141 (2003).
8. (a) T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis (John Wiley &
Sons, New York, 1999), p. 454 (b) H. Wakabayashi, M. Wakabayashi, W. Eisenreich, and K.-H.
Engel, J. Agric. Food. Chem., 51, 4349 (2003).
9. A. G. Fishman, A. K. Mallams, M. S. Puar, and R. R. Rossman, J. Chem. Soc., Perkin Trans. 1,
1189 (1987).
10. A. Ortiz, O. Arellano, E. Sansinenea, and S. Bernes, J. Mex. Chem. Soc., 51, 245 (2007).
11. (a) S. Widder, C. S. Luntzel, T. Dittner, and W. Pickenhagen, J. Agric. Food. Chem., 48, 418
(2000); (b) F. Robert, J. Heritier, J. Quiquerez, H. Simian, and I. Blank, J. Agric. Food. Chem.,
52, 3525 (2004); (c) C. Vermeulen, C. Guyot-declerck, and S. Collin, J. Agric. Food. Chem.,