co-workers.8 Such hybrid nanomaterials combine the physical
properties of the inorganic shell (particle size, pore, and
shape) with the tunable properties of the grafted organic
polymer.9 Key reports have demonstrated the potential scope
of surface-initiated ROM polymerization for the grafting of
organic polymers from inorganic nanoparticles,10 carbon
nanotubes,11 metal surfaces,12 and resins.13
Recently, ROMP-derived oligomeric and polymeric re-
agents/scavengers have surfaced for application in facilitated
synthetic protocols. These reagents possess several inherent
characteristics that address classical limitations associated
with traditional immobilized reagents, that is, load, tunable
properties, heterogeneous reaction kinetics, and so on.5,14-16
Inspired by these developments, it was envisioned that, by
combining the inherent high-load, tunable properties of
soluble ROMP-derived oligomers with an insoluble silica
support, a new variety of hybrid immobilized functionalized
reagents could be achieved. Unlike current methods of
functionalizing the surface of silica particles, the application
of surface-initiated ROM polymerization addresses the
limitation of load by allowing the grafting of multiple
monomer units into an oligomeric chain from each Nb-tagged
site on the silica particle (Figure 1).
Figure 1. (a) Standard functionalization of silica reagents. (b)
Functionalization of Nb-tagged silica particles utilizing surface-
initiated ROM polymerization.
ated the desired high-load soluble scavenger possessing a
theoretical load of 9.1 mmol/g. Therefore, it was envisioned
that preactivation of Nb-tagged silica 2 with Grubbs catalyst
would generate a catalyst-armed surface (CAS) capable of
efficient polymerization off the silica surface with Nb-tagged
monomer 3 while maintaining the high-load nature of the
reagent.
Utilizing a protocol reported by Buchmeiser and co-
workers in 2000,8 activated spherical silica 1 (70 Å, 20 µm
particle size) was tagged with 5-(bicycloheptenyl)-triethoxy
silane, followed by capping with trimethoxymethylsilane and
dimethoxydimethylsilane to yield the desired Nb-tagged silica
(Si-Nb) 2 (Scheme 1). With this tagged nanoparticle in
We initially focused on the synthesis of a Si-ROMP-
derived bis-acid chloride scavenger (Si-OBAC) by starting
with the corresponding Nb-tagged BAC-functionalized mono-
mer utilized for the generation of OBAC soluble oligomers.17
Previously, simple ROM polymerization of the corresponding
Nb-tagged bis-acid chloride monomer 3 using metathesis
catalyst [(IMesH2)(PCy3)(Cl)2RudCHPh; cat-B],18,19 gener-
Scheme 1
.
Synthesis of Silica-Grafted Oligomeric Bis-Acid
(7) (a) Graf, C.; Vossen, D. I. J.; Imhof, A.; van Blaaderen, A. Langmuir
2003, 19, 6693–6700. (b) Schneider, G.; Decher, G. Nano Lett. 2004, 4,
1833–1839.
Chloride 4 and 5 (Si-OBAC)
(8) (a) Buchmeiser, M. R.; Atzl, N.; Bonn, G. K. J. Am. Chem. Soc.
1997, 119, 9166–9174. (b) Ambrose, D.; Fritz, J. S.; Buchmeiser, M. R.;
Altz, N.; Bonn, G. K. J. Chromatogr., A 1997, 786, 259–268. (c)
Buchmeiser, M. R.; Sinner, F.; Mupa, M.; Wurst, K. Macromolecules 2000,
33, 32–39. (d) Eder, K.; Reichel, E.; Schottenberger, H.; Huber, C. G.;
Buchmeiser, M. R. Macromolecules 2001, 34, 4334–4341.
(9) Kim, N. Y.; Jeon, N. L.; Choi, I. S.; Takami, S.; Harada, Y.; Finnie,
K. R.; Girolami, G. S.; Nuzzo, R. G.; Whitesides, G. M.; Laibinis, P. E.
Macromolecules 2000, 33, 2793–2795.
(10) (a) Kong, B.; Lee, J. K.; Choi, I. S. Langmuir 2007, 23, 6761–
6765. (b) Faulkner, C. J.; Fischer, R. E.; Jennings, G. K. Macromolecules
2010, 43, 1203–1209.
(11) Jeong, W.; Kessler, M. R. Chem. Mater. 2008, 20, 7060–7068.
(12) Rutenberg, I. M.; Scherman, O. A.; Grubbs, R. H.; Jiang, W.;
Garfunkel, E.; Bao, Z. J. Am. Chem. Soc. 2004, 126, 4062–4063.
(13) Lapinte, V.; Montembault, V.; Houdayer, A.; Fontaine, L. J. Mol.
Catal. A: Chem. 2007, 276, 219–225.
(14) (a) Long, T.; Maity, P. K.; Samarakoon, T. B.; Hanson, P. R. Org.
Lett. 2010, 12, 2904–2907. (b) Rolfe, A.; Probst, D.; Volp, K.; Omar, I.;
Flynn, D.; Hanson, P. R. J. Org. Chem. 2008, 73, 8785–8790. (c) Stoianova,
D. S.; Yao, L.; Rolfe, A.; Samarakoon, T.; Hanson, P. R. Tetrahedron Lett.
2008, 49, 4553–4555. (d) Herpel, R. H.; Vedantham, P.; Flynn, D. L.;
Hanson, P. R. Tetrahedron Lett. 2006, 47, 6429–6432. (e) Harned, A. M.;
He Song, H.; Toy, P. H.; Flynn, D. L.; Hanson, P. R. J. Am. Chem. Soc.
2005, 127, 52–53. (f) Barrett, A. G. M.; Hopkins, B. T.; Love, A. C.;
Tedeschi, L. Org. Lett. 2004, 6, 835–837. (g) Arstad, E.; Barrett, A. G. M.;
hand, the surface was armed with metathesis catalyst cat-B
(0.6-0.8 equiv), followed by addition of the Nb-tagged BAC
monomer 3 to rapidly generate the desired hybrid material,
Si-OBAC50 4.20,21 A number of key parameters were critical,
including reaction concentration and prearming of the silica
surface with 0.8 equiv of cat-B before the addition of the
Nb-tagged monomeric species. This was important to ensure
Tedeschi, L. Tetrahedron Lett. 2003, 44, 2703–2707
(15) (a) Barrett, A. G. M.; Cramp, S. M.; Roberts, R. S. Org. Lett. 1999,
1, 1083–1086. (b) Roberts, R. S. J. Comb. Chem. 2005, 7, 21–32
.
.
(16) (a) Zhang, M.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2007,
72, 3194–3198. (b) Harned, A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson,
P. R. Tetrahedron 2005, 61, 12093–12099. (c) Zhang, M.; Moore, J. D.;
Flynn, D. L.; Hanson, P. R. Org. Lett. 2004, 6, 2657–2660
.
(17) Moore, J. D.; Byrne, R. J.; Vedantham, P.; Flynn, D. L.; Hanson,
P. R. Org. Lett. 2003, 5, 4241–4244.
Org. Lett., Vol. 13, No. 1, 2011
5