Journal of the American Chemical Society
Page 4 of 6
(1) (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745. (b) Zhong,
C.; Shi, X. Eur. J. Org. Chem. 2010, 2999. (c) Allen, A. E.; MacMillan,
D. W. C. Chem. Sci. 2012, 3, 633.
Control experiments with other acid catalysts
1
2
3
4
5
6
7
8
O
O
Ar
Ar
Ph
HO
Ar
acid catalysts, A8
H
H
Ar
(2) (a) Maki, T.; Ishihara, K.; Yamamoto, H.; Tetrahedron 2007, 63,
8645. (b) Georgiou, I.; Ilyashenko, G.; Whiting, A.; Acc. Chem. Res.
2009, 42, 756. (c) Zheng, H.; Hall, D. G. Aldrich. Acta. 2014, 47, 41.
(3) (a) Ricardo, C. L.; Mo, X.; McCubbin, J. A.; Hall, D. G. Chem. -
Eur. J. 2015, 21, 4218. (b) Mo, X.; Yakiwchuk, J.; Dansereau, J.;
McCubbin, J. A.; Hall, D. G. J. Am. Chem. Soc. 2015, 137, 9694.
(4) (a) Cozzi, P. G.; Benfatti, F.; Zoli, L. Angew. Chem. Int. Ed. 2009,
48, 1313. (b) Capdevila, M. G.; Benfatti, F.; Zoli, L.; Stenta, M.; Cozzi,
P. G. Chem. - Eur. J. 2010, 16, 11237.
(5) For an example of catalytic enantioselective SN1 benzylation of
branched aldehydes with benzyl bromides, see: (a) Brown, A. R.;
Kuo, W. -H.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286. For an
example of catalytic racemic allylation of branched aldehydes with
allylic alcohols, see: (b) Xu, L. -W.; Gao, G.; Gu, F. -L.; Sheng, H.; Li,
L.; Lai, G. -Q.; Jiang. J. -X. Adv. Synth. Catal. 2010, 352, 1441.
(6) For examples of enantioselective allylation of branched aldehydes
by transition metal/amine catalysis, see: (a) Usui, I.; Schmidt, S.;
Breit, B. Org. Lett. 2009, 11, 1453. (b) Jiang, G.; List, B. Angew. Chem.
Int. Ed. 2011, 50, 9471. (c) Yoshida, M.; Terumine, T.; Masaki, E.; Ha-
ra, S. J. Org. Chem. 2013, 78, 10853. (d) Krautwald, S.; Sarlah,
D.; Schafroth, M. A.; Carreira, E. M. Science. 2013, 340, 1065. (e) Huo,
X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem.
Int. Ed. 2014, 53, 6776. (f) Wang, P. -S.; Lin, H. -C.; Zhai, Y. -J.; Han,
Z. -Y.; Gong, L. -Z. Angew. Chem. Int. Ed. 2014, 53, 12218.
Me Ph
Me
1a
B1: up to 60%, 94:6 er
CpFe(III)CpSbF6
conditions
2a or 2b
3a or 4a
CpFe(III)CpSbF6
2,3,4,5-F4HC6B(OH)2:
up to 32%, 94:6 er
InBr3: up to 21%, 93:7 er
p-TsOH : < 5%, er n.d.
TFA: up to 18%, 88:12 er
+
:
up to 35%, 93:7 er
Proposed catalytic cycle
9
B(OR)3
Ph
HO
Ph
+
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
SbF6 Fe
Ph
Ph
C (tetra-ion)
Ion Exchange
B(OR)2
B(OH)2
+
B(OR)3
+
Fe
Fe
+
SbF6
SbF6
Fe
Boronic Acid Cycle
HFIP
D (zwitterion)
B1 (R = H or CH(CF3)2)
B1
Ph
SbF6
Ph
O
Ph
E (carbocation)
H
Ph
Me Ar
R1 R2
N
+
H2O
Me
H
(7) (a) Quasdorf, K. W.; Overman, L. E. Nature, 2014, 516, 181. (b)
Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.;
Jaya P. Das, J. P. J. Am. Chem. Soc. 2014, 136, 2682.
Ar
R1 R2
N
F3C
CF3
H (chiral enamine)
R1 R2
CF3
CF3
Me
H
N
H
Chiral Amine Cycle
(8) (+)-cuparene: (a) Enzell, C.; Erdtman, H.; Tetrahedron, 1958, 4,
361. LY426965: (b) Rasmussen, K.; Calligaro, D. O.; Czachura, J. F.;
Dreshfield-Ahmad, L. J.; Evans, D. C.; Hemrick-Luecke, S. K.; Kall-
man, M. J.; Kendrick, W. T.; Leander, J. D.; Nelson, D. L.; Overshiner,
C. D.; Wainscott, D. B.; Wolff, M. C.; Wong, D. T.; Branchek, T. A.;
Zgombick, J. M.; Xu, Y.-C. J. Pharmacol. Exp. Ther. 2000, 294, 688.
CCR5 antagonist: (c) Shah,S. K.; Chen, N.; Guthikonda, R. N.; Mills,
S. G.; Malkowitz, L.; Springer, M. S.; Gould, S. L.; Julie A. DeMartino,
J. A.; Carella, A.; Carver, G.; Holmes, K.; Schleif, W. A.; Danzeisen, R.;
Hazuda, D.; Kessler, J.; Lineberger, J.; Miller,M.; Emini E. A.; Mac-
Coss, M. Bioorg. Med. Chem. Lett. 2005, 15, 977. NK1/NK3 receptor
antagonist: (d) Hanessian, S.; Jennequin, T.; Boyer, N.; Babonneau,
V.; Soma, U.; la Cour, C. M.; Millan, M. J.; De Nanteuil, G. ACS Med.
Chem.Lett. 2014, 5, 550.
(9) For sexample, see: Kummer, D. A.; Chain, W. J.;Morales, M. R.;
Quiroga, O.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 13231; and
references cited therein.
(10) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2925.
(11) Zheng, G.; Lejkowski, M.; Hall, D. G. Chem. Sci. 2011, 2, 1305.
(12) Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 9748.
(13) Zhang, L.; Fu, N.; Luo, S. Acc. Chem. Res. 2015, 48, 986.
(14) (a) Sánchez, D.; Bastida, D.; Burés, J.; Isart, C.; Pineda, O.; Jaume
Vilarrasa, J.; Org. Lett. 2012, 14, 536. (b) Kempf, B.; Hampel, N.; Ofial,
A. R.; Mayr, H. Chem. - Eur. J. 2003, 9, 2209. For reviews on asym-
metric enamine catalysis, see: (c) Mukherjee, S.; Yang, J. W.; Hoff-
mann, S.; List, B. Chem. Rev. 2007, 107, 5471. (d) Desmarchelier, A.;
Coeffard, V.; Moreau, X.; Greck, C. Tetrahedron, 2014, 70, 2491.
(15) (a) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen.
K. A. Acc. Chem. Res. 2012, 45, 248.
(16) The addition of acetic acid is known to promote a faster E/Z
enamine equilibrium for branched aldehydes, see: Burés, J.; Arm-
strong, A.; Blackmond. D. G. Chem. Sci. 2012, 3, 1273.
(17) Baumann, T.; Bächle, M.; Hartmann, C.; Bräse, S. Eur. J. Org.
Chem. 2008, 2207.
Ar
A8
N
O
G (imine)
H
TBS
A8
R2
H2O
O
R1
N OH
Ar
Me
Ar
H
H
Me
F
ASSOCIATED CONTENT
Supporting Information
Experimental details, analytical and spectral reproductions
for the prepared compounds. The Supporting Information is
available free of charge on the ACS Publications website.
AUTHOR INFORMATION
Corresponding Author
*E-mail: dennis.hall@ualberta.ca
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This research was funded by the Natural Science and Engi-
neering Research Council of Canada (Discovery Grant to
D.G.H.) and the University of Alberta. X.M. thanks Alberta
Innovate − Health Solutions for a Graduate Studentship. We
thank Dr. Angelina Morales-Izquierdo for help with mass
spectrometric analyses, and Dr. Tristan Verdelet for sugges-
tions on the manuscript.
(18) To the best of our knowledge, dual catalytic asymmetric Tsuji-
Trost type allylation with Pd/amine catalysis on aldehydes with aryl
groups bearing bromo substituents has not been achieved, see: ref. 6.
(19) For a comparison of substrate 1h under Pd/amine/chiral phos-
phoric acid catalysis similar to ref. 6b, a lower enantioselectivity 67%
ee was observed, see: ref. 6f.
REFERENCES
ACS Paragon Plus Environment