6024
S. K. Sharma et al. / Tetrahedron Letters 51 (2010) 6022–6024
S.; Gribble, G. W. Tetrahedron Lett. 2007, 48, 1003–1005; (d) Witulski, B.;
Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257–4260.
12. (a) Roy, S.; Gribble, G. W. Tetrahedron Lett. 2008, 49, 1531–1533; (b) Robinson,
M. M.; Robinson, B. L.; Butler, F. P. J. Am. Chem. Soc. 1958, 81, 743–747.
and aromatic alkynes, the three-component reaction proceeded
smoothly under the optimized condition and the corresponding
products were obtained in moderate to good yields (52–75%).
The electronic effect appeared to have negligible effect on the reac-
tion since either electron withdrawing or the electron donating
groups on the different aromatic rings offered products with min-
imal variation in yields. Similarly, introduction of methyl group at
N-1 in the indole ring had no effect on the yields of annulated prod-
ucts. An attempt to employ aliphatic aldehydes or alkynes failed to
furnish title compounds that indicates limitations of our MCR
strategy.
In summary, we have developed an efficient method for the
synthesis of highly substituted d-carboline derivatives under metal
catalyst-free conditions. In general the strategy involves one-pot
multicomponent synthesis of highly diversified d-carbolines by
irradiating a mixture of N-Boc-3-amido indoles, aromatic terminal
alkynes, and aryl aldehydes under acidic conditions.
13. Wasserman, H. H.; Berger, G. D.; Cho, K. R. Tetrahedron Lett. 1982, 23, 465–468.
14. To
a stirred solution of 3-nitro indole (1 mmol) in methanol was added
saturated solution of ammonium chloride solution (4 mL). Zn dust was added
to the reaction mixture (10 mmol) portion wise over 15 min while maintaining
the temperature at 0 °C. After 10 min, (Boc)2O (1.2 mmol) was added and the
reaction mixture was allowed to warm to room temperature. After completion
of the reaction, the reaction mixture was filtered through Celite, the methanol
was distilled off under vacuo and the aqueous residue was extracted with DCM
(3 ꢀ 15 mL) .The combined organic phases were dried over anhydrous Na2SO4
and concentrated. The crude product was purified by column chromatography
to afford 1a–c.
tert-Butyl 1H-pyrrolo[2,3-b]pyridin-3-ylcarbamate (1c): Yield = 0.857 g (60%),
light yellow solid, mp 184–186 °C, Rf = 0.42 (2:8 EtOAc/hexane) IR (KBr) mmax
3340, 2955, 1685, 1588, 1462, 1366, 1162 cmꢁ1 1H NMR (200 MHz, CDCl3)
;
d = 9.80 (1H, s, NH), 8.31 (1H, dd, J = 4.8, 1.4 Hz ArH), 7.90–7.86 (1H, m, ArH),
7.55 (1H, s, CONH), 7.11–7.05 (1H, m, ArH), 6.49 (1H, s, ArH), 1.51 (9H, s,
3 ꢀ CH3); 13C NMR (100 MHz, CDCl3) d = 146.5, 143.3, 126.2, 115.5, 114.5,
113.8, 80.6, 28.5 ppm. Mass (ES+) m/z 234.2 (M++1). Anal. Calcd for
C
12H15N3O2: C, 61.79; H, 6.48; N, 18.01. Found: C, 61.75; H, 6.49; N, 18.04.
15. Gaddam, V.; Ramesh, S.; Nagarajan, R. Tetrahedron 2010, 66, 4218–4222.
16. A mixture of N-Boc-3-amido indoles 1a–c (1.0 mmol), aldehydes 2 (1.0 mmol),
and alkynes 3 (1.5 mmol) was treated with 30% solution of trifluoroacetic acid
in MeCN (5 mL), placed in a 10 mL microwave vial containing a stirring bar. The
reaction mixture was heated at 90 °C for 1.5 h in microwave (Biotage). The
reaction mixture was cooled to ambient temperature, washed with aq NaHCO3
(20 mL), and extracted with DCM (2 ꢀ 30 mL). The combined organic layer was
dried over anhydrous Na2SO4 and the solvent was removed in vacuo. The crude
product was purified on a silica gel column using ethyl acetate/hexane (v/v
1:4) as eluent to afford 4a–g, 5a–d, and 6a–n.
Acknowledgment
S.K.S., A.K.M., M.S., S.G., and P.K.A. are thankful to CSIR, New
Delhi, India for fellowships.
References and notes
1. (a) Ganem, B. Acc. Chem. Res. 2009, 42, 463–472; (b) Zhu, J.; Bienayme, H. In
Multicomponent Reactions; Wiley-VCH: Weinheim, 2005; (c) Bienayme, H.;
Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321–3329; (d) Domling,
A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210; (e) Zhu, J. Eur. J. Org. Chem.
2003, 7, 1133–1144; (f) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44,
1602–1634; (g) Ulaczyk-Lesanko, A.; Hall, D. G. Curr. Opin. Chem. Biol. 2005, 9,
266–276; (h) Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol.
2010, 14, 371–382.
2. (a) Biginelli, P. Chem. Ber. 1891, 24, 1317–1319; (b) Sweet, F.; Fissekis, J. D. J.
Am. Chem. Soc. 1973, 95, 7841–8749; (c) Kappe, C. O. J. Org. Chem. 1997, 62,
7201–7204.
3. (a) Passerini, M.; Simone, L. Gazz. Chim. Ital. 1921, 51, 126–129; (b) Bossio, R.;
Marcaccini, S.; Pepino, R.; Torroba, T. Synthesis 1993, 783–785; (c) Denmark, S.
E.; Fan, Y. J. Org. Chem. 2005, 70, 9667–9676.
2-(4-Chlorophenyl)-4-phenyl-5H-pyrido[3,2-b]indole (4a):Yield = 0.222 g (73%),
brown solid, mp >250 °C, Rf = 0.52 (2:8 EtOAc/hexane). IR (KBr) mmax 3071,
2367, 1589, 1461, 1380 cmꢁ1 1H NMR (200 MHz, CDCl3 + DMSO-d6) d = 11.15
;
(1H, s, NH), 8.34 (1H, d, J = 7.5 Hz, ArH), 8.20 (2H, d, J = 7.8 Hz, ArH), 7.85 (1H, d,
J = 8.4 Hz, ArH), 7.62–7.45 (9H, m, ArH), 7.27 (1H, t, J = 7.3 Hz, ArH); 13C NMR
(75 MHz, CDCl3) d = 147.7, 142.3, 141.7, 138.6, 136.4, 132.9, 131.9, 129.9,
129.1, 128.5, 128.1, 127.5, 121.8, 120.3, 119.5, 116.3, 112.2 ppm. Mass (ES+) m/
z 355.1 (M++1). Anal. Calcd for C23H15ClN2: C, 77.85; H, 4.26; N, 7.89. Found: C,
77.88; H, 4.25; N, 7.87.
17. (a) Clinquart, E. Bull. Acad. R. Med. Belg. 1929, 9, 627–635; (b) Tackie, A. N.;
Sharaf, M. H. M.; Schiff, P. L., Jr.; Boye, G. L.; Crouch, R. C.; Martin, G. E. J.
Heterocycl. Chem. 1991, 28, 1429–1435.
18. Dwuma-Badu, D.; Ayin, J. S. K.; Fiagbe, N. I. Y.; Knapp, J. E.; Shiff, P. L., Jr.;
Slatkin, D. J. J. Pharm. Sci. 1978, 67, 433–434.
4. (a) Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. Angew. Chem. 1959, 71, 386–
388; (b) Ugi, I.; Lohberger, S.; Karl, R. In Comprehensive Organic Synthesis; Trost,
B. M., Ed., Pergamon: Oxford, 1991; Vol. 2, pp 1083–1109; (c) Keating, T. A.;
Armstrong, R. W. J. Am. Chem. Soc. 1995, 117, 7842–7843; (d) Ross, G. F.;
Herdtweck, E.; Ugi, I. Tetrahedron 2002, 58, 6127–6133.
5. (a) Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647–667; (b) Tramontini,
M. Synthesis 1973, 703–775; (c) Arend, M.; Westermann, B.; Risch, N. Angew.
Chem., Int. Ed. 1998, 37, 1044–1070; (d) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5,
4473–4475; (e) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584–9585.
6. (a) Agarwal, P. K.; Sawant, D.; Sharma, S.; Kundu, B. Eur. J. Org. Chem. 2009, 2,
292–303; (b) Sharma, S.; Kundu, B. Tetrahedron Lett. 2008, 49, 7062–7065.
7. (a) Sharma, S. K.; Sharma, S.; Agarwal, P. K.; Kundu, B. Eur. J. Org. Chem. 2009, 9,
1309–1312; (b) Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Tetrahedron Lett.
2007, 48, 1379–1383; (c) Saha, B.; Kumar, R.; Maulik, P. R.; Kundu, B.
Tetrahedron Lett. 2006, 47, 2765–2769; (d) Sawant, D.; Kumar, R.; Maulik, P.
R.; Kundu, B. Org. Lett. 2006, 8, 1525–1528.
19. (a) Chakraborty, D. P. Tetrahedron Lett. 1966, 7, 661–664; (b) Chakraborty, D. P.
Phytochemistry 1969, 8, 762–769.
20. Wright, C. W.; Addae-Kyereme, J.; Breen, A. G.; Brown, J. E.; Cox, M. F., et al J.
Med. Chem. 2001, 44, 3187–3194.
21. (a) Bierer, D. E.; Dubenko, L. G.; Zhang, P.; Lu, Q.; Imbach, P. A.; Garofalo, A. W.;
Phuan, P. W.; Fort, D. M.; Litvak, J.; Gerber, R. E.; Sloan, B.; Luo, J.; Cooper, R.;
Reaven, G. M. J. Med. Chem. 1998, 41, 2754–2764; (b) Yang, S. W.; Abdel-Kader,
M.; Marga, S. M.; Werkhoven, C. M.; Wisse, J. H.; Bursuker, I.; Neddermann, K.;
Fairchild, C.; Suarez, C. R.; Menendez, A. T.; Lane, K.; Kingston, D. G. I. J. Nat.
Prod. 1999, 62, 976–983.
22. (a) Papamicael, C.; Queguiner, G.; Bourguignon, J.; Dupas, G. Tetrahedron Lett.
2001, 57, 5385–5391; (b) Desarbre, E.; Merour, J. Y. Synthesis 1997, 73–78; (c)
Merour, J.-Y.; Meour, A. Synthesis 1994, 767–769; (d) Spaeth, E. Chem. Ber.
1940, 73, 719–721; (e) Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-
Dumont, L.; Mallet, M.; Godard, A.; Queguner, G. J. Org. Chem. 1993, 58, 7832–
7838.
8. (a) Wei, C.; Zhang, L.; Li, C. J. Synlett 2004, 1472–1483; (b) Guchhait, S. K.;
Jadeja, K.; Madaan, C. Tetrahedron Lett. 2009, 50, 6861–6865; (c) Kikuchi, S.;
Iwai, M.; Fukuzawa, S. Synlett 2007, 2639–2642; (d) Baudelle, R.; Melnyk, P.;
Deprez, B.; Tartar, A. Tetrahedron 1998, 54, 4125–4140; (e) Cao, K.; Zhang, F.;
Tu, Y.-Q.; Zhuo, X.-T.; Fan, C.-A. Chem. Eur. J. 2009, 15, 6332–6334; (f) Bortolotti,
B.; Leardini, R.; Nanni, D.; Zanardi, G. Tetrahedron 1993, 49, 10157–10174; (g)
Appendino, G.; Cicione, L.; Minassi, A. Tetrahedron Lett. 2009, 50, 5559–5561.
9. (a) Bennasar, M. L.; Vidal, B.; Bosch, J. J. Org. Chem. 1997, 62, 3597–3609; (b)
Zhang, H. C.; Ye, H.; Moretto, A. F.; Brumeld, K. K.; Maryano, B. E. Org. Lett. 2000,
2, 89–92; (c) Marugan, J. J.; Manthey, C.; Anaclerio, B.; Lafrance, L.; Lu, T.;
Markotan, T.; Leonard, K. A.; Crysler, C.; Eisennagel, S.; Dasgupta, M.; Tomczuk,
B. J. Med. Chem. 2005, 48, 926–934; (d) Faul, M. M.; Winneroski, L. L.; Krumrich,
C. A. J. Org. Chem. 1998, 63, 6053–6058.
23. Jeanty, M.; Blu, J.; Suzenet, F.; Guillaumet, G. Org. Lett. 2009, 11, 5142–5145.
24. (a) Philippe, F.; Steven, H.; Beata, D. H.; Agnes, P. B.; Katrien, M.; Peter, M.; Bert,
U. W. M. Tetrahedron 2008, 64, 6030–6037; (b) Takehiko, I.; Akito, Y.; Takao, S.
J. Chem. Soc., Perkin Trans. 1., Org. Bioorg. Chem. 1999, 11, 1505–1510; (c) Rocca,
P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M. J. Org. Chem.
1993, 58, 7832–7838; (d) Erwan, A.; Patrick, R.; Francis, M.; Alain, G.; Guy, Q. J.
Heterocycl. Chem. 1997, 34, 1205–1210; (e) Leroy, G. M.; Pingchen, C. F.; Seth, Y.
A.; Alison, N.; Alice, M. C. Med. Chem. Res. 1999, 9, 118–132.
25. 2-(4-Chlorophenyl)-4-phenyl-5H-pyrido[20,30:4,5]pyrrolo[2,3-b]pyridine
Yield = 0.204 g (67%), light brown solid, mp >250 °C, Rf = 0.48 (2:8 EtOAc/
hexane). IR (KBr) mmax 3071, 2375, 1599, 1462, 1366, 1162 cmꢁ1 1H NMR
(6a):
;
(400 MHz, DMSO-d6) d = 12.12 (1H, s, NH), 8.67–8.58 (2H, m, ArH), 8.31
(2H, d, J = 8.4 Hz, ArH), 8.05 (1H, s, ArH), 7.91 (2H, d, J = 7.0 Hz, ArH),
7.63–7.55 (5H, m, ArH), 7.35 (1H, t, J = 5.8 Hz, ArH); 13C NMR (100 MHz,
CDCl3) d = 153.5, 148.7, 140.3, 138.3, 135.8, 133.1, 133.0, 129.6, 129.2,
129.0, 128.9, 128.7, 128.4, 117.8, 116.4, 114.6 ppm. Mass (ES+) m/z 356.1
(M++1). Anal. Calcd for C22H14ClN3: C, 74.26; H, 3.97; N, 11.81. Found: C,
74.22; H, 3.98; N, 11.84.
10. For review see: Sapi, J.; Laronze, J. Y. Arkivoc 2004, 208–222. and references
cited therein.
11. (a) Hino, T.; Nakagawa, M.; Hashizume, T.; Yamaji, N.; Miwa, Y. Tetrahedron
Lett. 1970, 11, 2205–2208; (b) Nakagawa, M.; Yamaguchi, H.; Hino, T.
Tetrahedron Lett. 1970, 11, 4035–4038. and references cited therein; (c) Roy,