ORGANIC
LETTERS
2010
Vol. 12, No. 24
5652-5655
Synthetic Development and Mechanistic
Study on Pd(II)-Catalyzed Cyclization of
Enediynes to Benzo[a]carbazoles
Chin-Chau Chen,† Lin-Yu Chin,‡ Shyh-Chyun Yang,† and Ming-Jung Wu*,‡
School of Pharmacy, Kaohsiung Medical UniVersity, Kaohsiung, Taiwan, and
Department of Chemistry, National Sun Yat-sen UniVersity, Kaohsiung, Taiwan
Received October 8, 2010
ABSTRACT
Treatment of N,N-dimethyl 2-[2-(2-ethynylphenyl)ethynyl]anilines (1) with 10 mol % of palladium chloride and 2 equiv of cupric chloride in
refluxing THF gave benzo[a]carbazoles (6) in good yields. A mechanistic study showed that this reaction must proceed through formation of
haloindole (7) followed by a palladium(II)-catalyzed atom transfer cyclization reaction to give the benzo[a]carbazoles.
The modes of cyclization of enediynes have attracted much
attention since the discovery of enediyne antitumor antibiot-
ics.1 Initially research focused on the Bergman2 and related
cyclization of enediynes to generate biradical intermediates
because they are the key intermediates for biological activi-
ties.3 Recently, attention has been turned to the nonclassical
thermal-type cyclization of enediynes to produce a variety
of aromatic and highly π-conjugated molecules. These
reactions involved the cyclization reaction of enediynes
promoted by electrophiles,4 nucleophiles,5 radicals,6 or
organometallics.7
Carbazoles are pharmaceutically important heterocycles8
and are attractive synthetic targets to many organic chemists.9
Recently, we reported the palladium-catalyzed cyclization of
enediynes to dibenzo[b,d]pyran-6-ones.10 Although the reaction
mechanism of that reaction is not clear, we anticipated that
(4) (a) Whitlock, H. W., Jr.; Sandvick, P. E. J. Am. Chem. Soc. 1966,
88, 4525. (b) Whitlock, H. W., Jr.; Sandvick, P. E.; Overman, L. E.;
Reichardt, P. B. J. Org. Chem. 1969, 34, 879. (c) Schreiner, P. R.; Prall,
M.; Lutz, V. Angew. Chem., Int. Ed. 2003, 42, 5757. (d) Lee, C. Y.; Wu,
M. J. Eur. J. Org. Chem. 2007, 3463.
† Kaohsiung Medical University.
‡ National Sun Yat-sen University.
(5) (a) Wu, M. J.; Lin, C. F.; Chen, S. H. Org. Lett. 1999, 1, 767. (b)
Wu, M. J.; Lin, C. F.; Lu, W. D. J. Org. Chem. 2001, 67, 5907. (c) Wu,
M. J.; Lee, J. Y.; Lin, C. F. Angew. Chem., Int. Ed. 2002, 41, 4077. (d)
Wu, M. J.; Lin, C. F.; Lu, W. D. J. Org. Chem. 2002, 67, 5907. (e) Lee,
C. Y.; Lin, C. F.; Lee, J. L.; Chiu, C. C.; Lu, W. D.; Wu, M. J. J. Org.
Chem. 2004, 69, 2106. (f) Chen, Z. Y.; Wu, M. J. Org. Lett. 2005, 7, 475.
(6) Covalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.;
Alabugin, I. V. Org. Lett. 2004, 6, 2457.
(1) (a) Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton,
G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. (b) Golik, J.;
Clardy, J.; Groenwold, G.; Kawaguchi, H.; Saltoh, K.; Doyle, T. W. J. Am.
Chem. Soc. 1987, 109, 3462. (c) Konishi, M.; Ohkuma, H.; Matsumoto,
K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne,
G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715. (d) Leet, J. E.;
Schroeder, D. R.; Hofstead, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr,
S. E. J. Am. Chem. Soc. 1992, 114, 7946.
(7) (a) Odedra, A.; Wu, C. J.; Pratap, T. B.; Huang, C. W.; Ran, Y. F.;
Liu, R. S. J. Am. Chem. Soc. 2005, 127, 3406. (b) Chang, H. K.; Liao,
Y. C.; Liu, R. S. J. Org. Chem. 2007, 72, 8139.
(2) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
(3) (a) Galm, U.; Hager, M. H.; Lanen, S. G. V.; Ju, J.; Thorson, J. S.;
Shen, B. Chem. ReV. 2005, 105, 739. (b) Nicolaou, K. C.; Smith, A. L.
Acc. Chem. ReV. 1992, 25, 497. (c) Nicolaou, K. C.; Dai, W. M. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1387.
(8) (a) Kno¨lker, H. J.; Reddy, K. R. Chem. ReV. 2002, 102, 4303. (b)
Kno¨lker, H. J. Curr. Org. Synth. 2004, 1, 309. (c) Kno¨lker, H. J. Top. Curr.
Chem. 2005, 244, 115.
10.1021/ol1024458 2010 American Chemical Society
Published on Web 11/18/2010