2 B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457; R. A.
Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of Organic
CompoundsAcademic Press: New York, 1981; J. Brinksma, J. W. de
Boer, R. Hage and B. L. Feringa, Modern Oxidation Methods, J.-E.
Ba¨ckvall (ed) 2004, Wiley-VCH, Chap. 10, 295; R. Noyori, M. Aoki
and K. Sato, Chem. Commun., 2003, 1977; T. Katsuki, Chem. Soc. Rev.,
2004, 33, 437.
3 D. W. Nelson, A. Gypser, P. T. Ho, H. C. Kolb, T. Kondo, H.-L. Kwong,
D. V. McGrath, A. E. Rubin, P.-O. Norrby, K. P. Gable and K. B.
Sharpless, J. Am. Chem. Soc., 1997, 119, 1840; T. Katsuki and K. B.
Sharpless, J. Am. Chem. Soc., 1980, 102, 5974; K. Sato, M. Aoki, M.
Ogawa, T. Hashimoto and R. Noyori, J. Org. Chem., 1996, 61, 8310;
W. A. Herrmann, R. W. Fischer and D. W. Marz, Angew. Chem., Int.
Ed. Engl., 1991, 30, 1638.
21 A. Thibon, J.-F. Bartoli, S. Bourcierc and F. Banse, Dalton Trans., 2010,
39, 9587. In this study the authors noted that the sterically encumbered
catalyst itself is considerably less capable of C–H abstraction. Hence it
could be that electronic rather than steric effects are important in this
case.
22 J. England, C. R. Davies, M. Banaru, A. J. P. White and G. J. P.
Britovsek, Adv. Synth. Catal., 2008, 350, 883.
23 B. C. Gilbert, J. R. Lindsay Smith, A. Mairata, I. Payeras, J. Oakes, R.
Pons and I. Prats, J. Mol. Catal. A: Chem., 2004, 219, 265.
24 I. Garcia-Bosch, X. Ribas and M. Costas, Adv. Synth. Catal., 2009,
351, 348.
25 A. Company, L. Gomez, M. Guell, X. Ribas, J. M. Luis, L. Que Jr. and
M. Costas, J. Am. Chem. Soc., 2007, 129, 15766; A. Company, Y. Feng,
M. Guell, X. Ribas, J. M. Luis, L. Que Jr. and M. Costas, Chem.–Eur.
J., 2009, 15, 3359.
4 T. J. Collins, Acc. Chem. Res., 1994, 27, 279.
5 T. J. Collins, Acc. Chem. Res., 2002, 35, 782.
26 (a) M. Wu, B. Wang, S. Wang, C. Xia and W. Sun, Org. Lett., 2009,
11, 3622; (b) M. C. White, A. G. Doyle and E. N. Jacobsen, J. Am.
Chem. Soc., 2001, 123, 7194; (c) M. Costas, A. K. Tipton, K. Chen,
D. H. Jo and L. Que Jr., J. Am. Chem. Soc., 2001, 123, 6722; (d) M.
S. Chen and M. C. White, Science, 2007, 318, 783; (e) K. Suzuki, P.
D. Oldenburg and L. Que Jr., Angew. Chem., Int. Ed., 2008, 47, 1887;
(f) P. D. Oldenburg and L. Que Jr., Catal. Today, 2006, 117, 15; (g) A.
Murphy, G. Dubois and T. D. P. Stack, J. Am. Chem. Soc., 2003, 125,
5250; (h) A. Murphy, A. Pace and T. P. D. Stack, Org. Lett., 2004,
6, 3119; (i) A. Murphy and T. D. P. Stack, J. Mol. Catal. A: Chem.,
2006, 251, 78; (j) L. Gomez, I. Garcia-Bosch, A. Company, X. Sala,
X. Fontrodona, X. Ribas and M. Costas, Dalton Trans., 2007, 5539;
(k) G. Guillemot, M. Neuburger and A. Pfaltz, Chem.–Eur. J., 2007,
13, 8960.
6 B. S. Lane, M. Vogt, V. J. DeRose and K. Burgess, J. Am. Chem. Soc.,
2002, 124, 11946.
7 K. Chen and L. Que. Jr, Chem. Commun., 1999, 1375.
8 J. Kim, R. G. Harrison, C. Kim and L. Que Jr., J. Am. Chem. Soc.,
1996, 118, 4373; M. H. Lim, J.-U. Rohde, A. Stubna, M. R. Bukowski,
M. Costas, R. Y. N. Ho, E. Munck, W. Nam and L. Que Jr., Proc. Natl.
Acad. Sci. U. S. A., 2003, 100, 3665.
9 G. Roelfes, M. Lubben, S. W. Leppard, E. P. Schudde, R. M. Hermant,
R. Hage, E. C. Wilkinson, L. Que and B. L. Feringa, J. Mol. Catal. A:
Chem., 1997, 117, 223.
10 K. Wieghardt, U. Bossek, B. Nuber, J. Weiss, J. Bonvoisin, M. Corbella,
S. E. Vitols and J. J. Girerd, J. Am. Chem. Soc., 1988, 110, 7398.
11 (a) R. Hage, J. E. Iburg, J. Kerschner, J. H. Koek, E. L. M. Lempers,
R. J. Martens, U. S. Racherla, S. W. Russell, T. Swarthoff, M. R. P.
van Vliet, J. B. Warnaar, L. van der Wolf and B. Krijnen, Nature, 1994,
369, 637; (b) D. E. De Vos and T. Bein, Chem. Commun., 1996, 917;
(c) C. Zondervan, R. Hage and B. L. Feringa, Chem. Commun., 1997,
419; (d) D. E. De Vos, B. F. Sels, M. Reynaers, Y. V. Subba Rao and
P. A. Jacobs, Tetrahedron Lett., 1998, 39, 3221; (e) A. Berkessel and C.
A. Sklorz, Tetrahedron Lett., 1999, 40, 7965; (f) C. B. Woitiski, Y. N.
Kozlov, D. Mandelli, G. V. Nizova, U. Schuchardt and G. B. Shul’pin,
J. Mol. Catal. A: Chem., 2004, 222, 103; (g) J. Brinksma, L. Schmieder,
G. Van Vliet, R. Boaron, R. Hage, D. E. De Vos, P. L. Alsters and B. L.
Feringa, Tetrahedron Lett., 2002, 43, 2619; (h) K. F. Sibbons, K. Shastri
and M. Watkinson, Dalton Trans., 2006, 645; (i) D. E. De Vos and T.
Bein, J. Organomet. Chem., 1996, 520, 195.
12 L. Gomez, I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo,
X. Sala, X. Ribas and M. Costas, Angew. Chem., Int. Ed., 2009, 48,
5720.
13 (a) A. Murphy, G. Dubois and T. D. P. Stack, J. Am. Chem. Soc., 2003,
125, 5250; (b) G. Dubois, A. Murphy and T. D. P. Stack, Org. Lett.,
2003, 5, 2469; (c) I. Garcia-Bosch, A. Company, X. Fontrodona, X.
Ribas and M. Costas, Org. Lett., 2008, 10, 2095.
27 J. Brinksma, R. Hage, J. Kerschner and B. L. Feringa, Chem. Commun.,
2000, 537.
28 J. Brinksma, M. T. Rispens, R. Hage and B. L. Feringa, Inorg. Chim.
Acta, 2002, 337, 75.
29 P. Saisaha, D. Pijper, R. P. van Summeren, R. Hoen, C. Smit, J. W. de
Boer, R. Hage, P. L. Alsters, B. L. Feringa and W. R. Browne, Org.
Biomol. Chem., 2010, 8, 4444.
30 P. Mialane, A. Nivorojkine, G. Pratviel, L. Aze´ma, M. Slany, F. Godde,
A. Simaan, F. Banse, T. Kargar-Grisel, G. Bouchoux, J. Sainton, O.
Horner, J. Guilhem, L. Tchertanova, B. Meunier and J.-J. Girerd, Inorg.
Chem., 1999, 38, 1085.
31 The formation of aminal structures from structures such as ligand 1
within the mass spectrometer is possible, however, in the present study
aminal structures were not detected immediately after addition of H2O2
but rather they appeared and increased in intensity over the course of
the lag period observed.
32 The X-ray crystal structure of the mononuclear MnII chlorido complex
of ligand 2 has been reported by M. Kloskowski and B. Krebs, Z.
Anorg. Allg. Chem., 2006, 632, 771.
33 K. B. Jensen, C. J. McKenzie, O. Simonsen, H. Toftlund and A. Hazell,
Inorg. Chim. Acta, 1997, 257, 163.
14 M. C. White, A. G. Doyle and E. N. Jacobsen, J. Am. Chem. Soc., 2001,
123, 7194.
15 J. W. de Boer, W. R. Browne, S. R. Harutyunyan, L. Bini, T. D.
Tiemersma-Wegman, P. L. Alsters, R. Hage and B. L. Feringa, Chem.
Commun., 2008, 3747.
34 It should be noted that although complexation to MnII would be
expected broaden the 1H NMR absorptions of the ligands and
ligand degradation products, the ratio of available MnII to pyridine-
2-carboxylic acid is lower than 1 : 3.
16 (a) M. Fujita, M. Costas and L. Que Jr., J. Am. Chem. Soc., 2003, 125,
9912; (b) K. Chen, M. Costas, J. Kim, A. K. Tipton and L. Que Jr., J.
Am. Chem. Soc., 2002, 124, 3026; (c) J. Y. Ryu, J. Kim, M. Costas, K.
Chen, W. Nam and L. Que Jr., Chem. Commun., 2002, 1288.
17 J. W. de Boer, J. Brinksma, W. R. Browne, A. Meetsma, P. L. Alsters,
R. Hage and B. L. Feringa, J. Am. Chem. Soc., 2005, 127, 7990.
18 J. W. de Boer, W. R. Browne, J. Brinksma, P. L. Alsters, R. Hage and B.
L. Feringa, Inorg. Chem., 2007, 46, 6353.
19 M. Martinho, F. Banse, J.-F. Bartoli, T. A. Mattioli, P. Battioni, O.
Horner, S. Bourcier and J.-J. Girerd, Inorg. Chem., 2005, 44, 9592.
20 H. Toftlund and S. Yde-Andersen, Acta Chem. Scand., Ser. A, 1981,
35a, 575.
35 The ability to engage in C–H activation could indicate that alkyl radicals
are involved however even with 10 vol% of CH2Br2, the oxidation
of diethyl fumarate goesto completion and for tetraline the same
conversion and selectivity was observed as in the absence of CH2Br2.
36 A. Murphy, A. Pace and T. D. P. Stack, Org. Lett., 2004, 6,
3119.
37 J. C. Tripp, C. H. Schiesser and D. P. Curran, J. Am. Chem. Soc., 2005,
127, 5518.
38 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62,
7512.
39 A. D. Brewer, Chem. Brit., 1975, 11, 335; G. M. Bodner, J. Chem. Educ.,
1985, 62, 1105.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 10375–10381 | 10381
©