10.1002/adsc.201800729
Advanced Synthesis & Catalysis
decarboxylation step. Additional exploration of
the substrate scope and mechanistic studies are
currently underway and will be reported in the
due course.
Wang, X.-H. Duan, Org. Biomol. Chem. 2016, 14,
7380-7391; m) P. Liu, G. Zhang, P. Sun, Org.
Biomol. Chem. 2016, 14, 10763-10777; n) B. R.
Ambler, M.-H. Yang, R. A. Altman, Synlett 2016, 27,
2747-2755; o) Y. Jin, H. Fu, Asian J. Org. Chem. 2017,
6, 368-385; p) Y. Wei, P. Hu, M. Zhang, W. Su, Chem.
Rev. 2017, 117, 8864-8907; q) G. J. P. Perry, I. Larrosa,
Eur. J. Org. Chem. 2017, 2017, 3517-3527.
Experimental Section
A 25-mL pressure tube equipped with a magnetic stirring
bar was dried with a heat-gun under reduced pressure and
filled with nitrogen after cooling to room temperature.
After adding aryl pivalate (0.2 mmol), and potassium
polyfluorobenzoate (0.4 mmol), the tube was introduced
inside a nitrogen-atmosphere glovebox. In the glovebox,
Ni(cod)2 (0.02 mmol, 5.6 mg), PCy3 (0.4 mmol, 11.2 mg)
and Zn(OAc)2 (0.2 mmol, 36.7 mg) were added to the tube,
which was sealed with O-ring tap and then taken out of the
glovebox. Then, cyclohexane (3.0 mL) was added to the
vessel under nitrogen atmosphere. The vessel was then
heated at 170 oC for 16 h in a heating module with stirring.
After that, the reaction mixture was cooled to room
temperature, filtered, concentrated and directly purified by
[3] a) L. J. Goossen, N. Rodriguez, C. Linder, J. Am. Chem.
Soc. 2008, 130, 15248-15249; b) L. J. Goossen, C.
Linder, N. Rodriguez, P. P. Lange, A. Fromm, Chem.
Commun. 2009, 7173-7175; c) L. J. Goossen, C. Linder,
N. Rodriguez, P. P. Lange, Chem. - Eur. J. 2009, 15,
9336-9349; d) L. J. Goossen, N. Rodriguez, P. P. Lange,
C. Linder, Angew. Chem., Int. Ed. 2010, 49, 1111-1114;
e) L. J. Goossen, P. P. Lange, N. Rodriguez, C. Linder,
Chem. - Eur. J. 2010, 16, 3906-3909; f) L. J. Goossen,
N. Rodriguez, C. Linder, P. P. Lange, A. Fromm,
ChemCatChem 2010, 2, 430-442; g) R. Shang, Q. Xu,
Y.-Y. Jiang, Y. Wang, L. Liu, Org. Lett. 2010, 12,
1000-1003; h) P. P. Lange, L. J. Goossen, P. Podmore,
T. Underwood, N. Sciammetta, Chem. Commun. 2011,
47, 3628-3630; i) B. Song, T. Knauber, L. J. Goossen,
Angew. Chem., Int. Ed. 2013, 52, 2954-2958; j) A.
Fromm, C. van Wuellen, D. Hackenberger, L. J.
Goossen, J. Am. Chem. Soc. 2014, 136, 10007-10023;
k) L. W. Sardzinski, W. C. Wertjes, A. M. Schnaith, D.
Kalyani, Org. Lett. 2015, 17, 1256-1259.
preparative
thin-layer
chromatography
(petroleum
ether/ethyl acetate as the eluent) to afford the product.
Acknowledgements
This work was supported by the grants from the National Natural
Science Foundation of China (21602096) and Nanchang
University (06301425).
References
[4] a) D.-G. Yu, B.-J. Li, Z.-J. Shi, Acc. Chem. Res. 2010,
43, 1486-1495; b) B.-J. Li, D.-G. Yu, C.-L. Sun, Z.-J.
Shi, Chem. - Eur. J. 2011, 17, 1728-1759; c) B. M.
Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M.
Resmerita, N. K. Garg, V. Percec, Chem. Rev. 2011,
111, 1346-1416; d) J. Yamaguchi, K. Muto, K. Itami,
Eur. J. Org. Chem. 2013, 2013, 19-30; e) T. Mesganaw,
N. K. Garg, Org. Process Res. Dev. 2013, 17, 29-39; f)
M. Tobisu, N. Chatani, Top. Organomet. Chem. 2013,
44, 35-54; g) S. Z. Tasker, E. A. Standley, T. F.
Jamison, Nature 2014, 509, 299-309; h) J. Cornella, C.
Zarate, R. Martin, Chem. Soc. Rev. 2014, 43, 8081-
8097; i) M. Tobisu, N. Chatani, Top. Curr. Chem. 2016,
374, 1-28; j) H. Zeng, Z. Qiu, A. Dominguez-Huerta, Z.
Hearne, Z. Chen, C.-J. Li, ACS Catal. 2017, 7, 510-519.
[1] a) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M.
Lemaire, Chem. Rev. 2002, 102, 1359-1469; b) I.
Cepanec in Synthesis of Biaryls, Elsevier, New York,
2004; c) A. M. Boldi, Curr. Opin. Chem. Biol. 2004, 8,
281-286; d) G. Bringmann, A. J. P. Mortimer, P. A.
Keller, M. J. Gresser, J. Garner, M. Breuning, Angew.
Chem., Int. Ed. 2005, 44, 5384-5427; e) D. Alberico,
M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-
238; f) D. S. Surry, S. L. Buchwald, Angew. Chem.,
Int. Ed. 2008, 47, 6338-6361; g) L. Ackermann in
Modern Arylation Methods, Wiley, Weinheim, 2009; h)
G. Bringmann, T. Gulder, T. A. M. Gulder, M.
Breuning, Chem. Rev. 2011, 111, 563-639; i) J.-S.
Wu, S.-W. Cheng, Y.-J. Cheng, C.-S. Hsu, Chem. Soc.
Rev. 2015, 44, 1113-1154; j) Y. Yang, J. Lan, J. You,
Chem. Rev. 2017, 117, 8787-8863.
[5] a) K. W. Quasdorf, X. Tian, N. K. Garg, J. Am.
Chem. Soc. 2008, 130, 14422-14423; b) B.-T. Guan,
Y. Wang, B.-J. Li, D.-G. Yu, Z.-J. Shi, J. Am. Chem.
Soc. 2008, 130, 14468-14470; c) B.-J. Li, Y.-Z. Li,
X.-Y. Lu, J. Liu, B.-T. Guan, Z.-J. Shi, Angew.
Chem., Int. Ed. 2008, 47, 10124-10127; d) B.-J. Li, L.
Xu, Z.-H. Wu, B.-T. Guan, C.-L. Sun, B.-Q. Wang,
Z.-J. Shi, J. Am. Chem. Soc. 2009, 131, 14656-
14657; e) C.-L. Sun, Y. Wang, X. Zhou, Z.-H. Wu,
B.-J. Li, B.-T. Guan, Z.-J. Shi, Chem. - Eur. J. 2010,
16, 5844-5847; f) P. Leowanawat, N. Zhang, V.
Percec, J. Org. Chem. 2012, 77, 1018-1025; g) K.
Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 2012,
134, 169-172; h) G. A. Molander, F. Beaumard, Org.
Lett. 2010, 12, 4022-4025; i) A. R. Ehle, Q. Zhou, M.
P. Watson, Org. Lett. 2012, 14, 1202-1205; j) J.
Wang, D. M. Ferguson, D. Kalyani, Tetrahedron 2013,
69, 5780-5790; k) M. Xu, X. Li, Z. Sun, T. Tu, Chem.
[2] a) L. J. Goossen, N. Rodriguez, K. Goossen, Angew.
Chem., Int. Ed. 2008, 47, 3100-3120; b) J. D.
Weaver, A. Recio, A. J. Grenning, J. A. Tunge,
Chem. Rev. 2011, 111, 1846-1913; c) N. Rodriguez,
L. J. Goossen, Chem. Soc. Rev. 2011, 40, 5030-5048;
d) R. Shang, L. Liu, Sci. China Chem. 2011, 54,
1670-1687; e) W. I. Dzik, P. P. Lange, L. J. Goossen,
Chem. Sci. 2012, 3, 2671-2678; f) J. Cornella, I.
Larrosa, Synthesis 2012, 44, 653-676; g) K. Park, S.
Lee, RSC Adv. 2013, 3, 14165-14182; h) J. Miao, H.
Ge, Synlett 2014, 25, 911-919; i) J. Xuan, Z.-G.
Zhang, W.-J. Xiao, Angew. Chem., Int. Ed. 2015, 54,
15632-15641; j) A. J. Borah, G. Yan, Org. Biomol.
Chem. 2015, 13, 8094-8115; k) H. Huang, K. Jia, Y.
Chen, ACS Catal. 2016, 6, 4983-4988; l) L.-N. Guo, H.
5
This article is protected by copyright. All rights reserved.