C O M M U N I C A T I O N S
48, 263–277. Karp, J. M.; Langer, R. Curr. Opin. Biotechnol. 2007, 18,
454–459.
(2) Lee, K. Y.; Mooney, D. J. Chem. ReV. 2001, 101, 1869–1879. Qiu, Y.;
Park, K. AdV. Drug DeliVery ReV. 2001, 53, 321–339. Slaughter, B. V.;
Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. AdV.
Mater. 2009, 21, 3307–3329.
(3) Estroff, L. A.; Hamilton, A. D. Chem. ReV. 2004, 104, 1201–1217.
(4) George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489–497. Terech, P.;
Weiss, R. G. Chem. ReV. 1997, 97, 3133–3159.
(5) Langer, R.; Tirrell, D. A. Nature 2004, 428, 487–492. Sangeetha, N. M.;
Maitra, U. Chem. Soc. ReV. 2005, 34, 821–836. van Bommel, K. J. C.;
Friggeri, A.; Shinkai, S. Angew. Chem., Int. Ed. 2003, 42, 980–999.
Yoshimura, I.; Miyahara, Y.; Kasagi, N.; Yamane, H.; Ojida, A.; Hamachi,
I. J. Am. Chem. Soc. 2004, 126, 12204–12205. Zhao, F.; Ma, M. L.; Xu,
B. Chem. Soc. ReV. 2009, 38, 883–891.
(6) Bowerman, C. J.; Nilsson, B. L. J. Am. Chem. Soc. 2010, 132, 9526–9527.
Claussen, R. C.; Rabatic, B. M.; Stupp, S. I. J. Am. Chem. Soc. 2003, 125,
12680–12681. Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato,
N.; Hamachi, I. Nat. Mater. 2004, 3, 58–64. Kiyonaka, S.; Sugiyasu, K.;
Shinkai, S.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 10954–10955.
Kretsinger, J. K.; Haines, L. A.; Ozbas, B.; Pochan, D. J.; Schneider, J. P.
Biomaterials 2005, 26, 5177–5186. Schneider, J. P.; Pochan, D. J.; Ozbas,
B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. J. Am. Chem. Soc. 2002, 124,
15030–15037. Toledano, S.; Williams, R. J.; Jayawarna, V.; Ulijn, R. V.
J. Am. Chem. Soc. 2006, 128, 1070–1071. Tovar, J. D.; Claussen, R. C.;
Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7337–7345. Ulijn, R. V.;
Woolfson, D. N. Chem. Soc. ReV. 2010, 39, 3349–3350.
behaves more like a viscous solution than an elastic gel. The obvious
decrease in G′ agrees with the gel-to-sol transition upon reduction.
Because site-specific drug delivery also requires that the su-
pramolecular hydrogel be able to resist the attack of proteases in
vivo, we synthesized the hydrogelator D-1 to improve the stability
of supramolecular hydrogels in biological environments. In order
to evaluate its biostability, we incubated the hydrogel of D-1 with
proteinase K, a powerful enzyme that hydrolyzes a broad spectrum
of peptides. The hydrogel of D-1 remained unchanged (Figure 4)
after incubation with proteinase K for 48 h, indicating excellent
biostability of D-1 against proteinase K. The fact that the addition
of proteinase K failed to cause the gel-to-sol transition of D-1 also
suggests that the hydrogel of 1 likely is insensitive to impurities.
(7) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149–2154.
(8) Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.;
Kessler, J. A.; Stupp, S. I. Science 2004, 303, 1352–1355.
(9) Shah, R. N.; Shah, N. A.; Lim, M. M. D.; Hsieh, C.; Nuber, G.; Stupp,
S. I. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 3293–3298.
(10) Salick, D. A.; Kretsinger, J. K.; Pochan, D. J.; Schneider, J. P. J. Am. Chem.
Soc. 2007, 129, 14793–14799.
Figure 4. Optical images of the hydrogel D-1 (A) before and (B) after
proteinase K treatment. HPLC traces of the hydrogel D-1 (C) before and
(D) after proteinase K treatment.
(11) Gelain, F.; Unsworth, L. D.; Zhang, S. G. J. Controlled Release 2010,
145, 231–239.
(12) Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn,
R. V.; Gough, J. E. Biomaterials 2009, 30, 2523–2530.
(13) Yang, Z. M.; Ho, P. L.; Liang, G. L.; Chow, K. H.; Wang, Q. G.; Cao, Y.;
Guo, Z. H.; Xu, B. J. Am. Chem. Soc. 2007, 129, 266–267.
(14) Mizoshita, N.; Suzuki, Y.; Kishimoto, K.; Hanabusa, K.; Kato, T. J. Mater.
Chem. 2002, 12, 2197–2201.
(15) Qiu, Z. J.; Yu, H. T.; Li, J. B.; Wang, Y.; Zhang, Y. Chem. Commun.
2009, 3342–3344.
(16) Vemula, P. K.; Li, J.; John, G. J. Am. Chem. Soc. 2006, 128, 8932–8938.
(17) Ebersole, J. L. Molecules 2008, 13, 771–771. Roldo, M.; Barbu, E.; Brown,
J. F.; Laight, D. W.; Smart, J. D.; Tsibouklis, J. Expert Opin. Drug DeliVery
2007, 4, 547–560. Sinha, V. R.; Kumria, R. Eur. J. Pharm. Sci. 2003, 18,
3–18.
(18) Dhaneshwar, S. S.; Gairola, N.; Kandpal, M.; Bhatt, L.; Vadnerkar, G.;
Kadam, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 1897–1902. Shantha,
K. L.; Ravichandran, P.; Rao, K. P. Biomaterials 1995, 16, 1313–1318.
Tozaki, H.; Odoriba, T.; Okada, N.; Fujita, T.; Terabe, A.; Suzuki, T.;
Okabe, S.; Muranishi, S.; Yamamoto, A. J. Controlled Release 2002, 82,
51–61.
In conclusion, we have demonstrated that tripeptide derivatives
conjugated with olsalazine exhibit excellent self-assembly properties
and generate prodrug-containing supramolecular hydrogels. We
have also shown that reduction of the azo group can disrupt
the supramolecular hydrogels and release the active ingredient. The
use of D-peptides also should help preserve the stability of the
hydrogels against proteases in the upper gastronomical tract. Since
it is easy to incorporate therapeutics other than the prodrug in
supramolecular hydrogels,24 this work illustrates a new and facile
way to use a prodrug with known metabolic pathways for generating
supramolecular hydrogels as smart biomaterials for site-specific drug
delivery.
(19) Cai, Q. X.; Zhu, K. J.; Chen, D.; Gao, L. P. Eur. J. Pharm. Biopharm.
2003, 55, 203–208. Chourasia, M. K.; Jain, S. K. J. Pharm. Pharm. Sci.
2003, 6, 33–66. Mahkam, M.; Assam, M. G.; Zahedifar, R.; Ramesh, M.;
Davaran, S. J. Bioact. Compat. Polym. 2004, 19, 45–53. Mahkam, M.;
Doostie, L. Drug DeliVery 2005, 12, 343–347. Schacht, E.; Gevaert, A.;
Kenawy, E. R.; Molly, K.; Verstraete, W.; Adriaensens, P.; Carleer, R.;
Gelan, J. J. Controlled Release 1996, 39, 327–338.
Acknowledgment. This work was partially supported by the
Human Frontier Program (HFSP, RGP 0056/2008), a startup grant
from Brandeis University, and the NIH (R01CA142746-01) and
was assisted by the Brandeis University EM Facility.
(20) Lehn, J. M. Supramolecular Chemistry: Concepts and PerspectiVes; VCH:
Supporting Information Available: Synthesis of hydrogelator 1,
HPLC traces and LC-MS data for the reduction of hydrogelator 1,
CD spectra, and rheological data. This material is available free of
Weinheim, Germany, 1995.
(21) Gao, Y.; Kuang, Y.; Guo, Z. F.; Guo, Z. H.; Krauss, I. J.; Xu, B. J. Am.
Chem. Soc. 2009, 131, 13576–13577.
(22) See the Supporting Information.
(23) Gottarelli, G.; Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G. P. Chirality
2008, 20, 471–485.
References
(24) Branco, M. C.; Schneider, J. P. Acta Biomater. 2009, 5, 817–831.
(1) Barcili, B. J. Pharm. Sci. 2007, 96, 2197–2223. Drury, J. L.; Mooney,
D. J. Biomaterials 2003, 24, 4337–4351. Griffith, L. G. Acta Mater. 2000,
JA109269V
9
J. AM. CHEM. SOC. VOL. 132, NO. 50, 2010 17709