6914
S. Umamatheswari et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6909–6914
Table 2
graphic data for compounds 25 (CCDC No. 697341) and 28 (CCDC
Best multiple linear regression model and t-values
Variable
Coefficient
S.E
t-value
Eq. 1 for S. aureus
Intercept
WPSA
Acknowledgements
3.997
0.061
65.495
7.314
4.759eꢁ03
6.507eꢁ04
This research work has been supported by Council of Scientific
and Industrial Research, New Delhi. The authors would like to
acknowledge NMR research centre, IISc-Bangalore and Department
of Chemistry, IIT-Madras, for recording NMR and single crystal XRD
respectively. B.B. and M.R. acknowledge the Department of Science
and Technology, SERC division, New Delhi for the financial assis-
tance towards QSAR programme.
Eq. 2 for E. coli
Intercept
WPSA
ꢁ6.482
1.984
3.267
1.306
5.394
1.286eꢁ03
ꢁ2.008eꢁ01
9.851eꢁ04
3.723eꢁ02
Polarizability
Eq. 3 for P. aeruginosa
Intercept
PISA
5.615
3.220eꢁ01
7.169eꢁ04
6.605eꢁ04
17.435
4.511
4.069
ꢁ3.234eꢁ03
WPSA
2.688eꢁ03
Eq. 4 for S. typhi
Intercept
FOSA
1.582eꢁ01
7.135eꢁ04
8.377eꢁ04
23.383
2.973
5.872
References and notes
3.699
2.121eꢁ03
4.919eꢁ03
1. (a) Projan, S. J.; Shlaes, D. M. Clin. Microbiol. Infect. 2004, 10, 18; (b) Fidler, D. F.
Emerg. Infect. Dis. 1998, 4, 169; (c) Oren, I.; Temiz, O.; Yalcin, I.; Sener, E.;
Altanlar, N. Eur. J. Pharm. Sci. 1998, 7, 153; (d) Hong, C. Y. J. Farmaco 2001, 56,
41; (e) Macchiarulo, A.; Constantino, G.; Fringuelli, D.; Vecchiarelli, A.;
Schiaffella, F.; Fringuelli, R. Bioorg. Med. Chem. 2002, 10, 3415; (f) Hatya, S.
A.; Aki-sener, E.; Tekiner-Gulbas, B.; Yildiz, I.; Temiz-Arpaci, O.; Yalcin, I.;
Altanlar, N. Eur. J. Med. Chem. 2006, 41, 1398.
2. El-Subbagh, H. I.; Abu-Zaid, S. M.; Mahran, M. A.; Badria, F. A.; Al-obaid, A. M. J.
Med. Chem. 2000, 43, 2915.
3. Jerom, B. R.; Spencer, K. H. Eur. Pat. Appl. 1988, EP 277794.
4. Perumal, R. V.; Adiraj, M.; Shanmugapandiyan, P. Indian Drugs 2001, 38, 156.
5. Hagenbach, R. E.; Gysin, H. Experientia 1952, 8, 184.
6. Mobio, I. G.; Soldatenkov, A. T.; Federov, V. O.; Ageev, E. A.; Sergeeva, N. D.; Lin,
S.; Stashenku, E. E.; Prostakov, N. S.; Andreeva, E. L. Khim. Farm. Zh. 1989, 23,
421.
7. Katritzky, A. R.; Fan, W. J. J. Org. Chem. 1990, 55, 3205.
8. Ganellin, C. R.; Spickett, R. G. W. J. Med. Chem. 1965, 8, 619.
9. Daly, J. W. In The Alkaloids; Cordell, G. A., Ed.; Academic press: Sandiego, CA,
1998; p 141.
WPSA
Eq. 5 for C. albicans
Intercept
Polarizability
ꢁ4.236
1.186
3.572
7.309
1.608eꢁ01
2.200eꢁ02
Eq. 6 for Rhizopus sp.
Intercept
HB donor
3.078
4.234eꢁ01
9.380eꢁ02
8.405eꢁ02
7.271
6.112
4.719
ꢁ5.734eꢁ01
Log P
3.966eꢁ01
Eq. 7 for A. niger
Intercept
Volume
1.717
1.014
1.693
3.167
4.596
2.157eꢁ03
ꢁ4.274eꢁ01
6.809eꢁ04
9.299eꢁ02
HB donor
Eq. 8 for A. flavus
Intercept
IP
40.912
ꢁ5.276
6.906
7.112
6.489
8.130eꢁ01
´
10. Modzelewska-Banachiewicz, B.; Banachiewicz, J.; Chodkowska, A.; Jagiello-Wo
In Eq. 5, polarizability has positive correlation with the anti-
fungal activity against C. albicans. Polarizability is related to size
and hydrophobicity of the compound. Sharma et al. observed that
increasing the polarizability of the compounds with bulkier substi-
tution increased the antifungal activity.33 Hydrogen bond (HB) do-
nor negatively correlates with the antifungal activity of the
compounds against Rhizopus sp. and A. niger (Eqs. 6 and 7). In addi-
tion, Eq. 6 indicates that lipophilicity can increase the antifungal
activity of the synthesized compounds against Rhizopus sp. This
may be due to the increased facilitation of the permeability of
the molecules through the fungal cell membrane.34 Compound
26 had high lipophilicity value (6.126) and exhibits better activity
against Rhizopus sp. From the Eq. 7 it can be stated that high molec-
ular volume favours the antifungal activity against A. niger which is
also evident from the experimental data. Further, a decrease in ion-
isation potential favours the antifungal activity against A. flavus
(Eq. 8). Ionisation potential highly correlates with WPSA (see Sup-
plementary data for more details) which implies that decrease in
halogens is favourable for antifungal activity against A. flavus. As
per the obtained Eq. 8, the compounds which are substituted with
methyl or methoxy groups showed better antifungal activity
against A. flavus.
jtowicz, E.; Mazur, L. Eur. J. Med. Chem. 2004, 39, 873.
11. Foroumadi, A.; Emami, S.; Hassanzadeh, A.; Rajaee, M.; Sokhanvar, K.; Moshafi,
M. H.; Shafiee, A. Bioorg. Med. Chem. Lett. 2005, 15, 4488.
12. Farghaly, A. A.; Bekhit, A. A.; Park, J. Y. Arch. Pharm. Pharm. Med. Chem. 2000,
333, 53.
13. Kadi, A. A.; El-Brollosy, N. R.; Al-Deeb, O. A.; Habib, E. E.; Ibrahim, T. M.; El-
Emam, A. A. Eur. J. Med. Chem. 2007, 42, 235.
14. Solak, N.; Rollas, S. Arkivoc xii 2006, 181.
15. Mamolo, M. G.; Falagiani, V.; Zampieri, D.; Vio, L.; Banfi, E.; Scialino, G., II
Farmaco 2003, 58, 631.
16. Schenone, S.; Brullo, C.; Bruno, O.; Bondavalli, F.; Ranise, A.; Filippelli, W.;
Rinaldi, B.; Capuano, A.; Falcone, G. Bioorg. Med. Chem. 2006, 14, 1698.
17. Foroumadi, A.; Emami, S.; Pournourmohammadi, S.; Kharazmi, A.; Shafiee, A.
Eur. J. Med. Chem. 2005, 40, 1350.
18. (a) Balasubramanian, S.; Ramalingan, C.; Aridoss, G.; Parthiban, P.; Kabilan, S.
Med. Chem. Res. 2004, 13, 297; (b) Balasubramanian, S.; Ramalingan, C.;
Aridoss, G.; Kabilan, S. Eur. J. Med. Chem. 2005, 40, 694; (c) Balasubramanian, S.;
Aridoss, G.; Parthiban, P.; Kabilan, S. Biol. Pharm. Bull. 2006, 29, 125; (d) Aridoss,
G.; Balasubramanian, S.; Parthiban, P.; Kabilan, S. Eur. J. Med. Chem. 2007, 42,
851; (e) Aridoss, G.; Amirthaganesan, S.; Ashok kumar, N.; Kim, J. T.; Kabilan, S.;
Jeong, Y. T. Bioorg. Med. Chem. Lett. 2008, 18, 6542; (f) Aridoss, G.; Parthiban, P.;
Ramachandran, R.; Prakash, M.; Kabilan, S.; Jeong, Y. T. Eur. J. Med. Chem. 2009,
44, 577.
19. Pandiarajan, K.; Sekar, R.; Anantharaman, R.; Ramalingam, V. Indian J. Chem.
1991, 30B, 490.
20. Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 1354.
21. Nardelli, M. Acta Crystallogr., Sect. C 1983, 39, 1141.
22. Umamatheswari, S.; Kabilan, S. J. Mol. Struct. 2009, 938, 142.
23. Dhar, M. L.; Dhar, M. M.; Dhawan, B. N.; Mehrotra, B. N.; Ray, C. Indian J. Exp.
Biol. 1968, 6, 232.
24. Maestro, Version 9.0, Schrödinger, LLC, New York, NY, 2009.
25. LigPrep, Version 2.3, Schrödinger, LLC, New York, NY, 2009.
26. MacroModel, Version 9.7, Schrödinger, LLC, New York, NY, 2009.
27. QikProp, Version 3.2, Schrödinger, LLC, New York, NY, 2009.
28. Duffy, E. M.; Jorgensen, W. L. J. Am. Chem. Soc. 2000, 122, 2878.
29. Strike, Version 1.8, Schrödinger, LLC, New York, NY, 2009.
30. Dimov, N.; Osman, A.; Mekenyan, O. V.; Papazova, D. Anal. Chim. Acta 1994, 298,
303.
In conclusion, QSAR analysis indicated that substituents like flu-
oro, chloro, bromo may increase the antibacterial potency of the
compounds. While introducing bulkier substituents in the synthe-
sized compounds, increasing the polarizability and hydrophobicity
may increase the antifungal activity. The information presented
here may effectively be used for designing newer compounds with
improved antimicrobial potential.
31. Roy, P. P.; Leonard, J. T.; Roy, K. Chemom. Intell. Lab. Syst. 2008, 90, 31.
32. Cao, Q.; Garib, V.; Yu, Q.; Connell, D. W.; Campitelli, M. Chemosphere 2009, 76,
453.
Supplementary data
33. Sharma, P.; Kumar, A.; Sharma, S.; Rane, N. Bioorg. Med. Chem. Lett. 2007, 15,
937.
34. Purushottamachar, P.; Kulkarni, V. M. Bioorg. Med. Chem. 2003, 11, 3487.
Detailed methodology of QSAR, complete experimental details
and conformation studies are given. Supplementary crystallo-