C O M M U N I C A T I O N S
-0.44 V and a first reduction at -1.05 V (E1ox - Er1ed ) 0.61 eV;
all potentials relative to internal ferrocene, Fc/Fc+), whereas Ni-5
has the typical electrochemistry of a porphyrin monomer (Eo1x
0.61 V; E1red ) -1.81 eV; Eo1x - Er1ed ) 2.42 eV).
)
In conclusion, we have synthesized a fused tetraanthracenylpor-
phyrin, Ni-1, by the oxidation of a meso-anthracenyl porphyrin,
Ni-5, through a reaction first proposed by Yen in 1975.11 The key
to this successful synthesis was the use of bulky aryloxy substituents
to facilitate oxidative ring closure and to hinder formation of
extended aggregates, although these substituents do not prevent the
formation of dimeric aggregates in the solid state. This porphyrin
has an exceptionally small HOMO-LUMO gap (λmax ) 1417 nm;
E1ox - E1red ) 0.61 eV). These results suggest that fused tetraan-
thracenylporphyrins may by useful materials for light harvesting
and charge transport in photovoltaic devices.
Acknowledgment. We thank the EPSRC and DSTL for support,
the EPSRC Mass Spectrometry Service (Swansea) for mass spectra,
the Diamond Light Source for beam time on I19 (MT1858), and
Kirsten E. Christensen and David R. Allan for assistance.
Supporting Information Available: Procedures for the synthesis
of Ni-1, spectroscopic data, and crystallographic data (CIF). This
References
(1) Zhi, L.; Mu¨llen, K. J. Mater. Chem. 2008, 18, 1472–1484.
(2) Lash, T. D.; Werner, T. M.; Thompson, M. L.; Manley, J. M. J. Org. Chem.
2001, 66, 3152–3159.
(3) Gill, H. S.; Harmjanz, M.; Santamar´ıa, J.; Finger, I.; Scott, M. J. Angew.
Chem., Int. Ed. 2004, 43, 485–490.
(4) Yamane, O.; Sugiura, K.; Miyasaka, H.; Nakamura, K.; Fujimoto, T.;
Nakamura, K.; Kaneda, T.; Sakata, Y.; Yamashita, M. Chem. Lett. 2004,
33, 40–41.
Figure 1. Two orthogonal views of the dimeric arrangement of Ni-1 in
(5) (a) Nakamura, N.; Aratani, N.; Shinokubo, H.; Takagi, A.; Kawai, T.;
Matsumoto, T.; Yoon, Z. S.; Kim, D. Y.; Ahn, T. K.; Kim, D.; Muranaka,
A.; Kobayashi, N.; Osuka, A. J. Am. Chem. Soc. 2006, 128, 4119–4127.
(b) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem.,
Int. Ed. 2006, 45, 3944–3947.
the crystal (hydrogens have been omitted for clarity).
(6) Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.;
Araki, Y.; Imahori, H. J. Phys. Chem. C 2008, 112, 15576–15585.
(7) (a) Davis, N. K. S.; Pawlicki, M.; Anderson, H. L. Org. Lett. 2008, 10,
3945–3947. (b) Davis, N. K. S.; Thompson, A. L.; Anderson, H. L. Org.
Lett. 2010, 12, 2124–2127.
(8) Sooambar, C.; Troiani, V.; Bruno, C.; Marcaccio, M.; Paolucci, F.; Listorti,
A.; Belbakra, A.; Armaroli, N.; Magistrato, A.; De Zorzi, R.; Geremia, S.;
Bonifazi, D. Org. Biomol. Chem. 2009, 7, 2402–2413.
(9) Jiao, C. J.; Huang, K. W.; Guan, Z. P.; Xu, Q. H.; Wu, J. S. Org. Lett.
2010, 12, 4046–4049.
(10) Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.; Thompson,
M. E. Angew. Chem., Int. Ed. 2010, 49, 5523–5526.
(11) Yen, T. F. The Role of Trace Metals in Petroleum; Ann Arbor Science
Publishers: Ann Arbor, MI, 1975.
(12) (a) Pisula, W.; Feng, X.; Mu¨llen, K. AdV. Mater. 2010, 22, 3634–3649.
(b) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Ha¨gele, C.; Scalia,
G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schrievogel, A.; Tonsoni, M. Angew.
Chem., Int. Ed. 2007, 46, 4832–4887.
(13) Volz, H.; Scha¨ffer, H. Chem.-Ztg. 1985, 109, 308–309.
(14) Data for Ni-1 were collected at low temperature (see: Cosier, J.; Glazer,
A. M. J. Appl. Crystallogr. 1986, 19, 105–107) with synchrotron radiation
using I19 (EH1) at the Diamond Light Source. The data were collected
and reduced using CrystalClear (Rigaku Inc., 2009). The structure was
solved using SuperFlip (see: Palatinus, L.; Chapuis, G. J. Appl. Crystallogr.
2007, 40, 786-790)and refined using full-matrix least-squares within
CRYSTALS (see: Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout,
K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487). In addition to
ordered solvent, the structure contains large solvent-accessible voids
comprising diffuse electron density. Discrete Fourier transforms of the void
regions were treated as contributions to the A and B parts of the calculated
structure factors using PLATON/SQUEEZE (see: Spek, A. L. J. Appl.
Crystallogr. 2003, 36, 7–13). Full refinement details are given in the CIF
file in the Supporting Information. The crystallographic data (excluding structure
factors) have been deposited with the Cambridge Crystallographic Data Centre
Figure 2. UV-vis-NIR spectra of unfused tetraanthracenylporphyrin Ni-5
(gray) and fused tetraanthracenylporphyrin Ni-1 (black) in toluene.
spectrum of Ni-1 shows a maximum at 1417 nm (optical
HOMO-LUMO gap: 0.87 eV). This peak is extremely sharp (ε )
1.2 × 105 M-1 cm-1; fwhm ) 284 cm-1), reflecting the high
symmetry and rigid geometry of the chromophore. The Q band of
Ni-1 occurs at a longer wavelength than those reported for all other
porphyrin monomers,5b and it is more red-shifted than those of most
conjugated porphyrin oligomers. As expected, Ni-1 has a small
electrochemical HOMO-LUMO gap and is easily oxidized. Square-
wave and cyclic voltammetry were carried out on Ni-5 and Ni-1
in THF with 0.1 M NBu4PF6. Ni-1 shows a first oxidation wave at
JA109671F
9
J. AM. CHEM. SOC. VOL. 133, NO. 1, 2011 31