Morpholinosulfur Trifluoride (Morph-DAST)-Mediated Rearrangement
3,3-Dimethoxy-2-butanone 15a and 2,2-dimethoxy- Acknowledgements
1,2-diphenylethanone 15b were treated with Morph-
The authors are indebted to the Research Foundation – Flan-
DAST at room temperature or at reflux temperature
in dichloromethane or benzene for various numbers
of days, but in these cases, no fluorinated reaction
products were obtained.
ders (FWO-Flanders), Ghent University (GOA, BOF) and
Johnson&Johnson Pharmaceutical Research & Development,
Division of Janssen Pharmaceutica NV, for financial support.
In conclusion, we have developed a new method
for 1,2-difluorination of monoacetals of cyclic 1,2-di-
ketones via a Morph-DAST-mediated 1,2-alkoxy mi-
gration reaction. The cis-and trans-1,2-dialkoxy-1,2-di-
fluorinated products are obtained in good yields and
are stable in the case of piperidines and tetrahydro-
pyrans.
References
[1] a) D. OꢂHagan, Chem. Soc. Rev. 2008, 37, 308–319;
b) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur,
Chem. Soc. Rev. 2008, 37, 320–330; c) J. T. Welch, S.
Eswarakrishnan, Fluorine in Bioorganic Chemistry,
John Wiley & Sons: New York, 1991, and references
cited herein; d) K. L. Kirk, Org. Process Res. Dev.
2008, 12, 305–321; e) K. Mꢃller, C. Faeh, F. Diederich,
Science 2007, 317, 1881–1886.
Experimental Section
[2] E. Prell, R. Csuk, Bioorg. Med. Chem. Lett. 2009, 19,
5673–5674.
[3] G. Verniest, R. Surmont, E. Van Hende, A. De We-
weire, F. Deroose, J. W. Thuring, N. De Kimpe, J. Org.
Chem. 2008, 73, 5458–5461, and references cited there-
in.
[4] E. Van Hende, G. Verniest, J. W. Thuring, G. Macdon-
ald, F. Deroose, N. De Kimpe, Synlett 2009, 1765–1768.
[5] G. Verniest, K. Piron, E. Van Hende, J. W. Thuring, G.
Macdonald, F. Deroose, N. De Kimpe, Org. Biomol.
Chem. 2010, 8, 2509–2512.
[6] R. Surmont, G. Verniest, A. De Weweire, J. W. Thuring,
G. Macdonald, F. Deroose, N. De Kimpe, Synlett 2009,
1933–1936.
[7] L. Somekh, A. Shanzer, J. Am. Chem. Soc. 1982, 104,
5836–5837.
[8] C. Ye, J. M. Shreeve, J. Fluorine Chem. 2004, 125,
1869–1872.
[9] D. J. Hallett, U. Gerhard, S. C. Goodacre, L. Hitzel,
T. J. Sparey, S. Thomas, M. Rowley, R. G. Ball, J. Org.
Chem. 2000, 65, 4984–4993.
[10] P. Lakshmipathi, D. Grꢄe, R. Grꢄe, Org. Lett. 2002, 4,
451–454.
General Procedure for the Deoxofluorination of a,a-
Dialkoxy Ketones 1
In a 50-mL flask, 0.50 g (1.93 mmol, 1.0 equiv.) of tert-butyl
4,4-dimethoxy-3-oxopiperidine-1-carboxylate 1a was dis-
solved in 25 mL of dry CH2Cl2. The solution was cooled to
À788C under N2 atmosphere and 1.01 g (5.79 mmol,
3.0 equiv., 0.7 mL) of Morph-DAST (morpholinosulfur tri-
fluoride) was added dropwise. The reaction mixture was al-
lowed to warm to room temperature and was stirred for
15 h. The mixture was diluted with 20 mL of CH2Cl2 and
was carefully quenched with 20 mL of aqueous saturated
NaHCO3 at 08C. The separated aqueous phase was extract-
ed with CH2Cl2 (2ꢁ20 mL) and the combined organic
phases were dried over MgSO4. After filtration, the solvent
was evaporated in vacuo and the concentrate was purified
by flash chromatography over silica gel (hexane/EtOAc 9:1,
Rf =0.38) affording tert-butyl 3,4-difluoro-3,4-dimethoxypi-
peridine-1-carboxylate 6a (yield: 0.42 g, 1.51 mmol; 78%;
cis-trans isomerism: major/minor 56:44 + each isomer con-
sists of two Boc-rotamers). Colourless oil. 1H NMR
(CDCl3): d=1.42 (9H, s, 3ꢁCH3), 1.74–2.10 (2H, m, CH2),
3.11–3.37 (2H, m, NCH2), 3.45, 3.48, 3.50 (2ꢁMeO), 3.53–
3.89 (2H, m, NCH2); 19F NMR (CDCl3): d=À130.6, À132.4,
À132.7, À133.4, À137.0, À137.8, À138.4, À139.2 (2F, 8 ꢁ s,
2ꢁCF); 13C NMR (CDCl3): d=28.2 (3ꢁCH3), 29.5, 30.0,
30.4, 31.3 (4ꢁd, J=27.7 Hz, 27.7 Hz, 27.7 Hz, 23.1 Hz, CH2),
39.5, 40.5 (2ꢁs, NCH2CH2), 43.9, 44.5, 45.6, 45.9 (4ꢁd, J=
45.0 Hz, 38.1 Hz, 35.8 Hz, 35.8 Hz, NCH2CF), 50.4 (m,
MeO), 51.3 (m, MeO); 80.5 (OCq); 109.0 (ddm, J=
231.3 Hz, 26.0 Hz, CF); 110.3 (ddm, J=230.8 Hz, 26.0 Hz,
CF), 154.1, 154.2 (2ꢁs, C=O); IR (ATR): n=2977, 1697 (C=
O), 1421, 1366, 1279, 1233, 1204, 1153, 1102, 1072, 1051, 936,
890, 822, 767, 718 cmÀ1; GC-MS (EI): m/z (%)=281 (M+,
5), 266 (M+ÀMe, 1); 241 (M+À2HF, 1), 222 (16), 210 (13),
206 (17), 190 (12), 186 (23), 176 (9), 161 (22), 146 (16), 131
(56), 118 (23), 104 (4), 93 (11), 89 (10), 76 (15), 57 (100), 42
(18); MS (ES+): m/z (%)=182 (MÀBoc+ +2H+, 5), 186
[11] G. R. Krow, G. Lin, K. P. Moore, A. M. Thomas, C. De-
Brosse, C. W. Ross, H. G. Ramjit, Org. Lett. 2004, 6,
1669–1672.
[12] S. Canova, V. Bellosta, S. Mignani, A. Bigot, J. Cossy,
Org. Lett. 2006, 8, 2091–2094.
[13] a) K. C. Nicolaou, T. Ladduwahetty, J. L. Randall, A.
Chucholowski, J. Am. Chem. Soc. 1986, 108, 2466–
2467; b) K. C. Nicolaou, R. M. Rodriguez, H. J. Mitch-
ell, H. Suzuki, K. C. Fylaktakidou, O. Baudoin, F. L.
van Delft, Chem. Eur. J. 2000, 6, 3095–3115; c) S. Cas-
tillon, A. Dessinges, R. Faghih, G. Lukacs, A. Olesker,
T. T. Thang, J. Org. Chem. 1985, 50, 4913–4917; d) P.
Borrachero-Moya, F. Cabrera-Escribano, M. Gꢅmez-
Guillꢄn, F. Madrid-Dꢆaz, Tetrahedron Lett. 1997, 38,
1231–1234; e) A. T. Carmona, P. Borrachero, F. Cab-
rera-Escribano, M. J. Diꢇnez, M. D. Estrada, A. Lꢅpez-
Castro, R. Ojeda, M. Gꢅmez-Guillꢄn, S. Pꢄrez-Garrido,
Tetrahedron: Asymmetry 1999, 10, 1751–1764; f) P.
Borrachero, F. Carera-Escribano, A. T. Carmona, M.
Gꢅmez-Guillꢄn, Tetrahedron: Asymmetry 2000, 11,
2927–2946; g) K. Dax, M. Albert, J. Ortner, B. J. Paul,
(MÀ2HFÀ
G
(CH3)3C+ +
ACHTUNGTRENNUNG
H+, 7), 300 (MÀHF+K+, 20).
Adv. Synth. Catal. 2010, 352, 2751 – 2756
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2755