C O M M U N I C A T I O N S
(4) Avetta, C. T.; Konkol, L. C.; Taylor, C. N.; Dugan, K. C.; Stern, C. L.;
Thomson, R. J. Org. Lett. 2008, 10, 5621–5624.
(5) De Lucchi and coworkers similarly speculated that the dimer of carvone
might be converted to an enantioenriched biaryl. Unfortunately, they were
unable to successfully execute this strategy. See: Mazzega, M.; Fabris, F.;
Cossu, S.; De Lucchi, O.; Lucchini, V.; Valle, G. Tetrahedron 1999, 55,
4427–4440.
(8) For examples, see: (a) Evans, D. A.; Dinsmore, C. J.; Evrard, D. A.; Devries,
K. M. J. Am. Chem. Soc. 1993, 115, 6426–6427. (b) Evans, D. A.;
Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson, T. I.; Trotter,
B. W.; Katz, J. L. Angew. Chem., Int. Ed. 1998, 37, 2704–2708. (c)
Nicolaou, K. C.; Boddy, C. N. C. J. Am. Chem. Soc. 2002, 124, 10451–
10455. (d) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc.
2002, 124, 773–775. (e) Clayden, J.; Mitjans, D.; Youssef, L. H. J. Am.
Chem. Soc. 2002, 124, 5266–5267. (f) Clayden, J.; Worrall, C. P.; Moran,
W.; Helliwell, M. Angew. Chem., Int. Ed. 2008, 47, 3234–3237. (g) Clayden,
J.; Fletcher, S. P.; McDouall, J. J. W.; Rowbottom, S. J. M. J. Am. Chem.
Soc. 2009, 131, 5331–5343. (h) Clayden, J.; Senior, J.; Helliwell, M. Angew.
Chem., Int. Ed. 2009, 48, 6270–6273.
(9) We have not included more standard chiral auxiliary approaches in this
group because such approaches are conceptually different. For examples,
see ref 1.
(10) Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L. Org. Lett. 1999,
1, 623–625.
(11) (a) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 2912–
2914. (b) Ito, Y.; Konoike, T.; Harada, T.; Saegusa, T. J. Am. Chem. Soc.
1977, 99, 1487–1493.
(12) Shintani, R.; Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004,
126, 6240–6241.
(13) Rautenstrauch, V. Bull. Soc. Chim. Fr. 1994, 131, 515–524.
(14) Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876–881.
(15) See the Supporting Information for details.
(6) For examples of related conformational preferences allowing for the
atropselective synthesis of a biaryl linkage, see: (a) Meyers, A. I.;
Wettlaufer, D. G. J. Am. Chem. Soc. 1984, 106, 1135–1136. (b) Baker,
R. W.; Hambley, T. W.; Turner, P.; Wallace, B. J. Chem. Commun. 1996,
2571–2572. (c) Koop, B.; Straub, A.; Scha¨fer, H. J. Tetrahedron: Asymmetry
2001, 12, 341–345. (d) Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y.
J. Am. Chem. Soc. 2004, 126, 5358–5359. (e) Hattori, T.; Date, M.; Sakurai,
K.; Morohashi, N.; Kosugi, H.; Miyano, S. Tetrahedron Lett. 2001, 42,
8035–8038. A similar sp3-to-sp2 conversion of an enone was utilized by
Baran and coworkers en route to haouamine A, whereby separable
macrocyclic enone conformers could be selectively oxidized to form
atropdiastereomeric biphenols within the natural product framework. See:
(f) Burns, N. Z.; Krylova, I. N.; Hannoush, R. N.; Baran, P. S. J. Am.
Chem. Soc. 2009, 131, 9172–9173.
(7) The term “self-immolative reaction” has been used to describe similar
processes (see ref 6a), but we favor the term “chirality exchange” put forth
by Nishii and coworkers (see ref 6d), as this is more descriptive in terms
of stereochemistry. The addition of the term “traceless” reflects our
particular interest in such bond disconnections as they apply to synthetic
strategy. See: (a) Mundal, D. A.; Avetta, C. A., Jr.; Thomson, R. J. Nat.
Chem. 2010, 2, 294–297. For additional discussion of the traceless synthetic
strategy, see: (b) Steinhardt, S. E.; Vanderwal, C. D. Nat. Chem. 2010, 2,
254–256. (c) Zhang, Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132,
9567–9569. (d) Collett, N.; Carter, R. G. Nat. Chem. 2010, 2, 613–614.
(16) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2004, 43, 1871–1876.
(17) Bao, J.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115,
3814–3815.
JA108717R
9
20 J. AM. CHEM. SOC. VOL. 133, NO. 1, 2011