A. Chaudhary, R. Patra, S. P. Rath
FULL PAPER
[6]
[7]
M. T. Green, J. Am. Chem. Soc. 2001, 123, 9218–9219.
A. Takahashi, T. Kurahashi, H. Fujii, Inorg. Chem. 2009, 48,
2614–2625.
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Computational Details: DFT calculations were performed with a
B3LYP hybrid functional by using the Gaussian 03, revision B.04,
package.[19] The method used was Becke’s three-parameter hybrid
exchange functional,[29] the nonlocal correlation was provided by
the Lee, Yang, and Parr expression,[30] and the Vosko, Wilk, and
Nuair 1980 correlation functional (III) for local correction. The
basis set was LanL2DZ for the iron atom and 6-31G** for the
carbon, nitrogen, oxygen, and hydrogen atoms. Molecular orbital
[8]
a) D. Kanamori, Y. Yamada, A. Onoda, T. Okamura, S. Ad-
achi, H. Yamamoto, N. Ueyama, Inorg. Chim. Acta 2005, 358,
331–338; b) N. Ueyama, N. Nishikawa, Y. Yamada, T. Oka-
mura, A. Nakamura, Inorg. Chim. Acta 1998, 283, 91–97; c)
M. P. Byrn, C. J. Curtis, Y. Hsiou, S. Khan, P. A. Sawin, S. K.
Tendick, A. Terzis, C. E. Strouse, J. Am. Chem. Soc. 1993, 115,
9480–9497; d) A. M. Helms, W. D. Jones, G. L. McLendon, J.
Coord. Chem. 1991, 23, 351–355; e) R. D. Arasasingham, A. L.
Balch, C. R. Cornman, J. S. de Ropp, K. Eguchi, G. N.
La Mar, Inorg. Chem. 1990, 29, 1847–1850; f) H. Sugimoto, N.
Ueda, M. Mori, Chem. Lett. 1982, 449–452.
a) R. D. Arasasingham, A. L. Balch, R. L. Hart, L. Latos-Gra-
zyn’ski, J. Am. Chem. Soc. 1990, 112, 7566–7571; b) A. L.
Balch, R. L. Hart, L. Latos-Grazyn’ski, Inorg. Chem. 1990, 29,
3253–3256; c) S. L. Kessel, D. N. Hendrickson, Inorg. Chem.
1980, 19, 1883–1889.
calculations were performed for [FeIII(OEP)(Hcat)]+ and [FeIII
-
(OEP)(Hcat)]2+ where all the coordinates were taken directly from
the single-crystal X-ray structure of FeIII(OEP)(Hcat). Single-point
energy calculations were performed for FeIII(OEP)(Hcat), in which
the mode of catechol binding with Fe varies between IV, V, and VI
as shown in Scheme 3. For the η1-coordination mode (IV), the
atom coordinates are taken directly from the single-crystal X-ray
structure of the molecule. However, for the η2-binding modes (V
and VI), the atom coordinates are taken from the single-crystal X-
ray structure of FeIII(OEP)(tropolone),[10] tropolone was replaced
by catechol, and the bite angle was fixed manually at 82°. For the
binegative η2-coordination mode (VI), negative charge was bal-
anced by a hydronium ion. The total energy was calculated by sim-
ply adding the energy obtained for VI with the energy of the hy-
dronium ion. For IV and V, however, the total energy was adjusted
by adding the energy of the molecules with the energy of the water
molecules. The calculation shows that the η1-mode of binding (IV)
of catechol is found to be energetically much more stable than η2-
binding modes (V and VI) by 12.9 and 94.2 kcalmol–1, respectively,
in the gas phase. Single-point solvent calculations were also per-
formed by using the CPCM[31] approach, which is an implementa-
tion of the conductor-like screening solvation model (COSMO)[32]
in Gaussian 03; THF was used as solvent (dielectric constant =
7.58). The calculation shows that the η1-mode of binding (IV) of
catechol is also energetically more stable than η2-binding modes
(V and VI) by 58.1 and 79.6 kcalmol–1, respectively. No geometry
optimizations were performed for any of these molecules.
[9]
[10]
[11]
L. Cheng, M. A. Khan, D. R. Powell, R. W. Taylor, G. B. Rich-
ter-Addo, Chem. Commun. 1999, 1941–1942.
a) H. Fujii, Y. Funahashi, Angew. Chem. Int. Ed. 2002, 41,
3638–3641; b) M. I. Davis, A. M. Orville, F. Neese, J. M. Zale-
ski, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2002,
124, 602–614; c) E. I. Solomon, T. Brunold, M. I. Davis, J. N.
Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S.
Yang, J. Zhou, Chem. Rev. 2000, 100, 235–349; d) L. Que,
R. Y. N. Ho Jr., Chem. Rev. 1996, 96, 2607–2624; e) A. L. Feig,
S. J. Lippard, Chem. Rev. 1994, 94, 759–805.
a) G. Du, A. Ellern, L. K. Woo, Inorg. Chem. 2004, 43, 2379–
2386; b) G. D. Fallon, S. J. Langford, M. A.-P. Lee, E. Lygris,
Inorg. Chem. Commun. 2002, 5, 715–718; c) A. Tutass, M.
Klopfer, H. Huckstadt, U. Cornelissen, H. Homborg, Z.
Anorg. Allg. Chem. 2002, 5, 1027; d) M. Kurihara, N. Katoh,
T. Kojima, Y. Ishii, Y. Matsuda, Inorg. Chem. 1995, 34, 4888–
4895.
a) J. L. Sessler, A. Mozaffari, M. R. Johnson, Org. Synth. 1992,
70, 68–78; b) B. Cheng, J. D. Hobbs, P. G. Debrunner, J. Erleb-
acher, J. A. Shelnutt, W. R. Scheidt, Inorg. Chem. 1995, 34,
102–110.
T. Uno, K. Hatano, Y. Nishimura, Y. Arata, Inorg. Chem. 1990,
29, 2803–2807.
[12]
[13]
[14]
Supporting Information (see footnote on the first page of this arti-
cle): Cyclic voltammograms of FeIII(OEP)(Hcat) and FeIII(OEP)-
(sal) (Figure S1).
[15]
[16]
S. K. Sur, J. Magn. Reson. 1989, 82, 169–173.
E. T. Kintnert, J. H. Dawson, Inorg. Chem. 1991, 30, 4892–
4897.
[17]
[18]
K. Nakamura, A. Ikezaki, Y. Ohgo, T. Ikeue, S. Neya, M. Nak-
amura, Inorg. Chem. 2008, 47, 10299–10307.
Acknowledgments
a) R. Patra, A. Chaudhary, S. K. Ghosh, S. P. Rath, Inorg.
Chem. 2010, 49, 2057–2067; b) R. Patra, S. Bhowmik, S. K.
Ghosh, S. P. Rath, Dalton Trans. 2010, 39, 5795–5806; c) S. K.
Ghosh, R. Patra, S. P. Rath, Inorg. Chem. 2010, 49, 3449–3460;
d) S. K. Ghosh, R. Patra, S. P. Rath, Inorg. Chim. Acta 2010,
363, 2791–2799; e) R. Patra, A. Chaudhary, S. K. Ghosh, S. P.
Rath, Inorg. Chem. 2008, 47, 8324–8335; f) S. K. Ghosh, R.
Patra, S. P. Rath, Inorg. Chem. 2008, 47, 10196–10198.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, L. Komaromi, R. L.
We are thankful to the Department of Science and Technology,
Government of India and the Council of Scientific and Industrial
Research (CSIR), India for financial support. A. C. and R. P. thank
CSIR, India for their fellowships.
[19]
[1] a) Y. Watanabe, H. Nakajima, T. Ueno, Acc. Chem. Res. 2007,
40, 554–562; b) Y. Watanabe, H. Fujii, in Metal-Oxo and
Metal-Peroxo Species in Catalytic Oxidations (Ed.: B. Meun-
ier), Springer, New York, 2000, vol. 97, pp. 61–89.
[2] a) H. P. Hersleth, U. Ryde, P. Rydberg, C. H. Görbitz, K. K.
Andersson, J. Inorg. Biochem. 2006, 100, 460–476; b) H. B.
Dunford, Heme Peroxidases, Wiley-VCH, New York, 1999.
[3] a) H. N. Kirkman, G. F. Gaetani, Trends Biochem. Sci. 2007,
32, 44–50; b) G. R. Schonbaum, B. Chance, in The Enzymes
(Ed.: P. D. Boyer), Academic Press, New York, 1976, vol. 13,
pp. 363–408.
[4] C. D. Putnam, A. S. Arvai, Y. Bourne, J. A. Tainer, J. Mol. Biol.
2000, 296, 295–309.
[5] P. Chelikani, I. Fita, P. C. Loewen, Cell Mol. Life Sci. 2004,
61, 192–208.
5220
www.eurjic.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2010, 5211–5221