S. Berger, E. Haak / Tetrahedron Letters 51 (2010) 6630–6634
6633
[RuLOH(CO)n]
ways. Mechanistic details regarding intermediates of the catalytic
cycles, stereochemical aspects, redox-coupling of the dienone li-
gand, and the role of its basic co-ordination site are currently under
investigation.
[RuLO(CO)n]
O
OH
a
b
R = H
b
H
Ph
F
R
O
Ph
O
G
4. General procedure
a
≠
R
H
Compound 1a (0.02 mmol) was dissolved in toluene (1 mL)
mixed with a solution of TFA in toluene (20 lL, 1 M) if necessary
[RuLOH(CO)n]
O
O
and propargyl alcohol (1 mmol) as well as the nucleophilic compo-
nent (1 mmol) were added. The mixture was stirred at 100 °C for
3 h under argon. Aqueous work-up and chromatography on silica
furnished the purified products.
R
[RuLOH(CO)n]
Ph
O
O
Ph
H
5
- [RuLO(CO)n]
- [RuLO(CO)n]
Acknowledgment
6
N
N
Constant support by the Fonds der Chemischen Industrie is
gratefully acknowledged.
N
N
R'
OH
R'
LO
=
LOH
=
R
R
O
References and notes
Scheme 7. Postulated transformation of internal aromatic substrates.
1. (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176–2203; (b)
Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. In Ruthenium in Organic Synthesis;
Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim, 2004; pp 189–217; (c) Bruneau,
C.; Neveux, M.; Kabouche, Z.; Ruppin, C.; Dixneuf, P. H. Synlett 1991, 755–763;
(d) Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 507–512; (e) Dixneuf, P.
H.; Bruneau, C. In Transition Metal Catalyzed Reactions; Murahashi, S.-I., Davis, S.
G., Eds.; Blackwell: Oxford, 1999; pp 391–404.
2. (a) Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem. 1987, 52,
2230–2239; (b) Devanne, D.; Ruppin, C.; Dixneuf, P. H. J. Org. Chem. 1988, 53,
925–926; (c) Bruneau, C.; Kabouche, Z.; Neveux, M.; Seiller, B.; Dixneuf, P. H.
Inorg. Chim. Acta 1994, 222, 155–163.
3. (a) Doucet, H.; Höfer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun.
1993, 850–851; (b) Tokunaga, T.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi,
A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917–11924; (c) Doucet, H.;
Martin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1995, 60, 7247–7255;
(d) Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.;
Kirchner, K. Organometallics 1996, 15, 3998–4004; (e) Melis, K.; Samulkiewiecz,
P.; Rynkowski, J.; Verpoort, F. Tetrahedron Lett. 2002, 43, 2713–2716; (f)
Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706–707.
4. (a) Picquet, M.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 1201–1202;
(b) Picquet, M.; Fernandez, A.; Bruneau, C.; Dixneuf, P. H. Eur. J. Org. Chem. 2000,
2361–2366.
5. (a) Haak, E. Synlett 2006, 1847–1848; (b) Haak, E. Eur. J. Org. Chem. 2007, 2815–
2824; (c) Haak, E. Eur. J. Org. Chem. 2008, 788–792.
6. Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Org. Chem.
2004, 69, 3408–3412.
7. Cadierno, V.; Díez, J.; Gimeno, J.; Nebra, N. J. Org. Chem. 2008, 73, 5852–5858.
8. Bigi, F.; Carloni, S.; Maggi, R.; Muchetti, C.; Sartori, G. J. Org. Chem. 1997, 62,
7024–7027.
9. Casey, C. P.; Jiao, X.; Guzei I. A. Organometallics 2010, 29. doi:10.1021/
Due to the fact that internal aliphatic propargyl alcohols as well
as aliphatic enynes like 8c remain unreactive and in accordance
with our previous results5 we assume that the ruthenium-cata-
lyzed-additions of carboxylic acids or cyclic 1,3-dicarbonyl com-
pounds to terminal propargyl alcohols are initiated by chelating
co-ordination of the propargyl alcohol to the 16-electron metal
species (A) followed by the formation of ruthenium vinylidene
complex B or allenylidene species C. Nucleophilic addition of a li-
gand-co-ordinated carboxylic acid at the C atom of vinylidene
a
complex B should occur trans-selective from the less hindered site
to give alkenyl complex D that liberates product 3. Nucleophilic
addition of a co-ordinated cyclic 1,3-dicarbonyl compound should
occur at the C atom of allenylidene complex C followed by cycli-
c
zation of the resulting vinylidene species to give alkenyl complex
E (Scheme 6).
The side products 4 and 6 could be driven from
p-complexed
terminal alkynes (analogues to A) that may be formed from vinyl-
idene intermediates. The TFA needed as a co-catalyst in some cases
may enhance the solubility of cyclic 1,3-diketones in toluene, pro-
mote the dehydration step of the allenylidene formation, and en-
hance the electrophilicity of the ruthenium center by protonation
of the dienone ligand.
The transformation of internal aromatic propargyl alcohols may
be initiated by TFA-catalyzed benzylic substitution. The following
10. Data of selected compounds
Compound 3e (C6H10O3): 1H NMR (400 MHz, CDCl3): d = 1.35 (d, J = 7.1 Hz, 3H),
2.13 (s, 3H), 5.39 (dq, J = 7.6, 7.1 Hz, 1H), 5.46 (dd, J = 12.3, 7.6 Hz, 1H), 7.37 (d,
J = 12.3 Hz, 1H) ppm. 13C NMR (100 MHz, DEPT, CDCl3): d = 20.7 (CH3), 21.3
(CH3), 67.6 (CH), 114.1 (CH), 138.2 (CH), 167.7 (C) ppm. MS (EI): m/z 130 [M+].
HRMS: calcd: 130.06299, found: 130.06276.
ruthenium-catalyzed cyclization could occur from the
p-com-
plexed alkyne F leading to methylene dihydrofuran compound 6
in case of quartary substrates like 11t (Scheme 6, pathway a). Ter-
tiary substrates like 11r may undergo a 1,2-hydrogene shift prior
to cyclization of the resulting unsaturated alkenyl complex G to
give allyl complex H that liberates pyran compound 5 (Scheme 7,
pathway b). A related hydrogene shift was reported previously.5b,9
Competing hydrolysis of the alkenyl intermediate leads to Meyer-
Schuster product 7.
Compound 3j (C17H20O3): 1H NMR (400 MHz, CDCl3): d = 1.26–1.70 (m, 10H),
5.71 (d, J = 12.5 Hz, 1H), 6.46 (d, J = 16.0, 1H), 7.40–7.42 (m, 3H), 7.51 (d,
J = 12.5 Hz, 1H), 7.54–7.56 (m, 2H), 7.78 (d, J = 16.0 Hz, 1H) ppm. 13C NMR
(100 MHz, DEPT, CDCl3): d = 22.0 (CH2), 25.4 (CH2), 38.2 (CH2), 70.4 (C), 117.3
(CH), 122.6 (CH), 128.2 (CH), 128.9 (CH), 130.7 (CH), 134.1 (C), 135.9 (CH),
146.9 (CH), 164.1 (C) ppm. MS (EI): m/z 272 [M+]. HRMS: calcd: 272.14124,
found: 272.14139.
Compound 5b (C11H14O2): 1H NMR (400 MHz, CDCl3): d = 0.74 (t, J = 7.6 Hz, 3H),
1.24 (dq, J = 13.6, 7.6 Hz, 1H), 1.31 (s, 3H), 2.02 (dq, J = 13.6, 7.6 Hz, 1H), 2.39–
2.42 (m, 2H), 2.56–2.59 (m, 2H), 4.65 (d, J = 6.0 Hz, 1H), 6.48 (d, J = 6.2 Hz, 1H)
ppm. 13C NMR (100 MHz, DEPT, CDCl3): d = 10.3 (CH3), 25.1 (CH2), 28.2 (CH3),
32.1 (CH2), 33.3 (CH2), 34.4 (C), 114.1 (CH), 119.5 (C), 138.7 (CH), 178.9 (C),
204.2 (C) ppm. MS (EI): m/z 178 [M+]. HRMS: calcd: 178.09938, found:
178.09935.
3. Conclusion
In summary, we have demonstrated that monomeric cyclopen-
tadienone complexes of type 1 are suitable catalysts for regio-
selective additions of carboxylic acids or cyclic 1,3-dicarbonyl
compounds to various terminal propargyl alcohols. The reaction
mechanisms may involve the formation of neutral vinylidene or
allenylidene species. The transformation of internal aromatic prop-
argyl alcohols proceeds by different substrate-dependent path-
Compound 5d (C15H14O2): 1H NMR (400 MHz, CDCl3): d = 1.77 (s, 3H), 2.35–2.40
(m, 2H), 2.60–2.64 (m, 2H), 4.98 (d, J = 6.1 Hz, 1H), 6.57 (d, J = 6.1 Hz, 1H), 7.10–
7.51 (m, 5H) ppm. 13C NMR (100 MHz, DEPT, CDCl3): d = 25.1 (CH2), 26.2 (CH3),
33.3 (CH2), 36.7 (C), 114.9 (CH), 121.0 (C), 126.4 (CH), 127.0 (CH), 128.2 (CH),
137.4 (CH), 146.5 (C), 177.1 (C), 203.7 (C) ppm. MS (EI): m/z 226 [M+]. HRMS:
calcd: 226.09938, found: 226.09961.
Compound 5f (C14H12O2): 1H NMR (400 MHz, CDCl3): d = 2.36–2.40 (m, 2H),