Efficient Synthesis of Deazaguanosine-Derived tRNA Nucleosides
[9] S. Nishimura, Prog. Nucleic Acid Res. Mol. Biol. 1983, 28, 49–
73.
[10] A. R. Ferre-DЈAmare, Curr. Opin. Struct. Biol. 2003, 13, 49–
55; G. A. Garcia, J. D. Kittendorf, Bioorg. Chem. 2005, 33,
229–251.
but simultaneously removed all protecting groups. For this
reaction, we dissolved nucleoside 8 in MeOH and treated
the solution with gaseous HCl. After 3 h the solvent was
removed, and the resulting oil was stirred in 7 n ammonia
in MeOH. The crude product was purified by HPLC as
described before.[31] The described approach furnished ar-
chaeosine in only eight steps with an overall yield of 2.4%.
[11] B. Stengl, K. Reuter, G. Klebe, ChemBioChem 2005, 6, 1926–
1939.
[12] R. C. Morris, M. S. Elliott, Mol. Genet. Metab. 2001, 74, 147–
159; P. F. Agris, Nucleic Acids Res. 2004, 32, 223–238; B. C.
Persson, Mol. Microbiol. 1993, 8, 1011–1016; E. M. Gustilo,
F. A. P. Vendeix, P. F. Agris, Curr. Opin. Microbiol. 2008, 11,
134–140; M. Vinayak, C. Pathak, Biosci. Rep. 2010, 30, 135–
148.
Conclusions
[13] E. Randerath, H. P. Agrawal, K. Randerath, Cancer Res. 1984,
44, 1167–1171; W. Langgut, T. Reisser, Nucleic Acids Res. 1995,
23, 2488–2491; C. Pathak, Y. K. Jaiswal, M. Vinayak, Biosci.
Rep. 2008, 28, 73–81; C. Pathak, Y. K. Jaiswal, M. Vinayak,
Mol. Biol. Rep. 2008, 35, 369–374.
To the best of our knowledge this report describes the
first Grignard and iodine/magnesium exchange reaction
performed with deazapurines. Application of the Turbo-
Grignard reagent allowed us to perform functionalization
of the C7 position in the presence of benzoyl and pivaloyl
protecting groups. This facilitated the synthesis of the de-
azaguanosine-derived tRNA nucleosides archaeosine,
PreQ0, and PreQ1, which should now enable detailed bio-
chemical investigation of their functions in vivo.[32] In the
course of this study, introduction of the versatile nitrile
moiety through the presented Turbo-Grignard reaction has
been established. Expansion of the scope of this reaction to
other electrophiles is currently under investigation and
might turn the here-established reaction into a general tool
for the manipulation of deazaguanosines.
[14] W. Baranowski, G. Dirheimer, A. Jakowicki, G. Keith, Cancer
Res. 1994, 54, 4468–4471.
[15] F. Klepper, K. Polborn, T. Carell, Helv. Chim. Acta 2005, 88,
2610–2616.
[16] T. Ritschel, P. C. Kohler, G. Neudert, A. Heine, F. Diederich,
G. Klebe, ChemMedChem 2009, 4, 2012–2023.
[17] F. Seela, P. Xiaohua, Curr. Top. Med. Chem. 2006, 6, 867–892;
E. A. Meade, S. H. Krawczyk, L. B. Townsend, Tetrahedron
Lett. 1988, 29, 4073–4076; N. Tanaka, R. T. Wu, T. Okabe, H.
Yamashita, A. Shimazu, T. Nishimura, J. Antibiot. 1982, 35,
272–278; S. Naruto, H. Uno, A. Tanaka, H. Kotani, Y. Takase,
Heterocycles 1983, 20, 27–32; N. Nishizawa, Y. Kondo, M.
Koyama, S. Omoto, M. Iwata, T. Tsuruoka, S. Inouye, J. Anti-
biot. 1984, 37, 1–5; P. S. Ritch, R. I. Glazer, Dev. Cancer
Chemother. 1984, 1–33.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for the com-
pounds prepared.
[18] F. Klepper, E.-M. Jahn, V. Hickmann, T. Carell, Angew. Chem.
Int. Ed. 2007, 46, 2325–2327.
[19] X. Peng, F. Seela, Nucleosides Nucleotides Nucleic Acids 2007,
26, 603–606; F. Seela, X. Peng, J. Org. Chem. 2006, 71, 81–90.
[20] J. Davoll, B. A. Lowy, J. Am. Chem. Soc. 1952, 74, 1563–1566.
[21] J. Ipaktschi, Chem. Ber. 1984, 117, 856–858.
[22] C. S. Cheng, G. C. Hoops, R. A. Earl, L. B. Townsend, Nucleo-
sides Nucleotides 1997, 16, 347–364; T. Kondo, K. Okamoto,
T. Ohgi, T. Goto, Tetrahedron 1986, 42, 207–213.
[23] C. S. Cheng, B. C. Hinshaw, R. P. Panzica, L. B. Townsend, J.
Am. Chem. Soc. 1976, 98, 7870–7872.
Acknowledgments
We thank the Deutsche Forschungsgemeinschaft (grants CA275/8-
4 and SFB749) as well as the Volkswagen Foundation for financial
support.
[24] A. Murso, P. Rittmeyer, Spec. Chem. Magn. 2006, 26, 40–41;
A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed.
2006, 45, 159–162.
[25] N. Boudet, P. Knochel, Org. Lett. 2006, 8, 3737–3740.
[26] N. Boudet, S. R. Dubbaka, P. Knochel, Org. Lett. 2008, 10,
1715–1718.
[27] T. Tobrman, D. Dvorak, Org. Lett. 2003, 5, 4289–4291.
[28] N. Ramzaeva, G. Becher, F. Seela, Synthesis 1998, 1327–1330.
[29] I. Cerna, R. Pohl, B. Klepetarova, M. Hocek, J. Org. Chem.
2010, 75, 2302–2308; M. Klecka, R. Pohl, B. Klepetarova, M.
Hocek, Org. Biomol. Chem. 2009, 7, 866–868; I. Cerna, R.
Pohl, B. Klepetarova, M. Hocek, J. Org. Chem. 2008, 73, 9048–
9054; I. Cerna, R. Pohl, B. Klepetarova, M. Hocek, Org. Lett.
2006, 8, 5389–5392.
[30] F. Kopp, P. Knochel, Synlett 2007, 38, 980–982.
[31] T. Bruckl, F. Klepper, K. Gutsmiedl, T. Carell, Org. Biomol.
Chem. 2007, 5, 3821–3825.
[32] T. Bruckl, D. Globisch, M. Wagner, M. Muller, T. Carell, An-
gew. Chem. Int. Ed. 2009, 48, 7932–7934; M. Münzel, D. Glob-
isch, T. Brückl, M. Wagner, V. Welzmiller, S. Michalakis, M.
Müller, M. Biel, T. Carell, Angew. Chem. Int. Ed. 2010, 49,
5375–5377.
[1] F. Juhling, M. Morl, R. K. Hartmann, M. Sprinzl, P. F. Stadler,
J. Putz, Nucleic Acids Res. 2009, 37, D159–D162; H. Grosjean,
M. Sprinzl, S. Steinberg, Biochimie 1995, 77, 139–141.
[2] D. Iwata-Reuyl, Bioorg. Chem. 2003, 31, 24–43.
[3] J. M. Gregson, P. F. Crain, C. G. Edmonds, R. Gupta, T. Hash-
izume, D. W. Phillipson, J. A. McCloskey, J. Biol. Chem. 1993,
268, 10076–10086.
[4] H. Kasai, K. Nakanishi, R. D. Macfarlane, D. F. Torgerson, Z.
Ohashi, J. A. McCloskey, H. J. Gross, S. Nishimura, J. Am.
Chem. Soc. 1976, 98, 5044–5046.
[5] J. Urbonavicius, G. Stahl, J. M. B. Durand, S. N. Ben Salem,
Q. Qian, P. J. Farabaugh, G. R. Bjork, RNA 2003, 9, 760–768;
G. R. Bjork, J. M. B. Durand, T. G. Hagervall, R. Leipuviene,
H. K. Lundgren, K. Nilsson, P. Chen, Q. Qian, J. Urbonavic-
ius, FEBS Lett. 1999, 452, 47–51.
[6] Y. Bai, D. T. Fox, J. A. Lacy, S. G. Van Lanen, D. Iwata-Reuyl,
J. Biol. Chem. 2000, 275, 28731–28738; J. R. Katze, B. Basile,
J. A. McCloskey, Science 1982, 216, 55–56.
[7] W. Langgut, T. Reisser, S. Nishimura, H. Kersten, FEBS Lett.
1993, 336, 137–142; C. Pathak, Y. K. Jaiswal, M. Vinayak, Bi-
oFactors 2007, 29, 159–173.
[8] J. M. B. Durand, G. R. Bjork, Mol. Microbiol. 2003, 47, 519–
527.
Received: July 13, 2010
Published Online: October 22, 2010
Eur. J. Org. Chem. 2010, 6517–6519
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6519