10.1002/anie.201903384
Angewandte Chemie International Edition
COMMUNICATION
Angew. Chem. 2010, 122, 2596–2600; Angew. Chem. Int. Ed. 2010, 49,
2542–2546; d) A. Z. González, D. Benitez, E. Tkatchouk, W. A.
Goddard, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 5500–5507; e) A.
Pitaval, D. Leboeuf, J. Ceccon, A. M. Echavarren, Org. Lett. 2013, 15,
4580–4583.
Reaction of the deuterated substrate 1’a-d3 (95%-d) under the
standard conditions gave the corresponding acenaphthene 4a-
d3 bearing deuterium atoms at the 1-and 2-positions without a
loss of deuterium content.
[4]
[5]
a) J. H. Lee, F. D. Toste, Angew. Chem. 2007, 119, 930–932; Angew.
Chem. Int. Ed. 2007, 46, 912–914; for a related [3 + 2 + 2] type reaction
with a carbonyl group, see: b) T. Jiménez, J. Carreras, J. Ceccon, A. M.
Echavarren, Org. Lett. 2016, 18, 1410–1413.
(ca. 95%-d)
(95%-d)
CD3
Ph
(ca.
D
D
Ph
95%-d
)
D
2
1
BrettPhosAuNTf2
(2 mol%)
a) D. Benitez, E. Tkatchouk, A. Z. Gonzalez, W. A. Goddard, F. D.
Toste, Org. Lett. 2009, 11, 4798–4801; b) B. W. Gung, D. T. Craft,
Tetrahedron Lett. 2009, 50, 2685–2687; c) I. Alonso, B. Trillo, F. López,
S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareñas, J.
Am. Chem. Soc. 2009, 131, 13020–13030; d) I. Alonso, H. Faustino, F.
López, J. L. Mascareñas, Angew. Chem. 2011, 123, 11698–11702;
Angew. Chem. Int. Ed. 2011, 50, 11496–11500.
•
DCM (0.2 M)
rt
1'a-d3
4a-d
3 (72%)
Scheme 5. Isotopic labeling experiment
[6]
a) G.-Y. Lin, C.-Y. Yang, R.-S. Liu, J. Org. Chem. 2007, 72, 6753–
6757; b) P. H. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, F. D.
Toste, J. Am. Chem. Soc. 2008, 130, 4517–4526; c) Á. González-
Gómez, G. Domínguez, J. Pérez-Castells, Eur. J. Org. Chem. 2009,
5057–5062; for the reaction of acyloxy-allenes generated by
rearrangement of propargylic carboxylates, see: d) J. Zhao, C. O.
Hughes, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 7436–7437; e) E.
Rettenmeier, M. M. Hansmann, A. Ahrens, K. Rübenacker, T. Saboo, J.
Massholder, C. Meier, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Chem. Eur. J. 2015, 21, 14401–14409.
In conclusion, we have developed
a gold(I)-catalyzed
cyclization of allenynes that terminates with a carbon–carbon
bond formation for the construction of naphthalene-substituted
fused cyclopropanes and acenaphthenes. These results can be
explained by the formation of a vinyl cation intermediate via
intramolecular nucleophilic attack of an alkyne on the activated
allene, followed by cyclopropanation or 1,5–H shift. Studies
directed towards further determination of the reaction
mechanism as well as application to π-conjugated molecules are
currently underway in our laboratory.
[7]
[8]
C.-Y. Yang, G.-Y. Lin, H.-Y. Liao, S. Datta, R.-S. Liu, J. Org. Chem.
2008, 73, 4907–4914.
For other reactions of allenynes initiated with the attack of internal
heteronucleophiles, see: a) R. Zriba, V. Gandon, C. Aubert, L.
Fensterbank, M. Malacria, Chem. Eur. J. 2008, 14, 1482–1491; b) Y. Li,
M. Wei, M. Dai, Tetrahedron 2017, 73, 4172–4177.
Acknowledgements
[9]
a) Y. Tokimizu, S. Oishi, N. Fujii, H. Ohno, Angew. Chem. 2015, 127,
7973–7977; Angew. Chem. Int. Ed. 2015, 54, 7862–7866; b) J.
Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi, H. Ohno, Angew. Chem.
2017, 129, 7552–7556; Angew. Chem. Int. Ed. 2017, 56, 7444–7448; c)
N. Hamada, A. Yamaguchi, S. Inuki, S. Oishi, H. Ohno, Org. Lett. 2018,
20, 4401–4405; d) Y. Kawada, S. Ohmura, M. Kobayashi, W. Nojo, M.
Kondo, Y. Matsuda, J. Matsuoka, S. Inuki, S. Oishi, C. Wang, T. Saito,
M. Uchiyama, T. Suzuki, H. Ohno, Chem. Sci. 2018, 9, 8416–8425.
This work was supported by the JSPS KAKENHI (Grant
Numbers JP15KT0061, JP17H03971, and JP18H04408), Basis
for Supporting Innovative Drug Discovery and Life Science
Research (BINDS, JP18am0101092j0001) from AMED, Japan,
and the Hoansha Foundation.
Keywords: gold catalysis • allene • cyclopropanation • C-H
[10] For examples of gold-catalyzed reactions via vinyl cation intermediates,
see: a) K. Ji, X. Liu, B. Du, F. Yang, J. Gao, Chem. Commun. 2015, 51,
10318–10321; b) T. Wurm, J. Bucher, S, B. Duckworth, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Angew. Chem. 2017, 129, 3413–3417;
Angew. Chem. Int. Ed. 2017, 56, 3364–3368; see also, ref. 14d.
[11] CCDC 1900611 (2ab) and 1900610 (4a) contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre.
functionalization • cascade reaction
[1]
For selected reviews on gold catalysis, see: a) A. S. K. Hashmi, G. J.
Hutchings, Angew. Chem. 2006, 118, 8064–8105; Angew. Chem. Int.
Ed. 2006, 45, 7896–7936; b) D. J. Gorin, F. D. Toste, Nature 2007, 446,
395–403; c) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev. 2008, 37,
1766–1775; d) H. C. Shen, Tetrahedron 2008, 64, 7847–7870; e) H.
Ohno, Isr. J. Chem. 2013, 53, 869–882; f) C. Obradors, A. M.
Echavarren, Chem. Commun. 2014, 50, 16–28; g) R. Dorel, A. E.
Echavarren, Chem. Rev. 2015, 115, 9028–9072; h) Y. Li, W. Li, J
Zhang, Chem. Eur. J. 2017, 23, 467–512.
[12] Other heteroarenes such as furan, pyrrole and NH-indole derivatives
gave complex mixtures of unidentified products.
[13] It is known that a cyano group does not completely deactivate cationic
gold, see: a) R. S. Ramón, N. Marion, S. P. Nolan, Chem. Eur. J. 2009,
15, 8695–8697; b) K. Hirano, Y. Inaba, N. Takahashi, M. Shimano, S.
Oishi, N. Fujii, H. Ohno, J. Org. Chem. 2011, 76, 1212–1227.
[2]
For reviews on gold-catalyzed reactions of allenes, see: a) N. Bongers,
N. Krause, Angew. Chem. 2008, 120, 2208; Angew. Chem. Int. Ed.
2008, 47, 2178–2181; b) R. A. Widenhoefer, Chem. Eur. J. 2008, 14,
5382–5391; c) P. Belmont, E. Parker, Eur. J. Org. Chem. 2009, 6075–
6089; d) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994–2009; e)
M. Bandini, Chem. Soc. Rev. 2011, 40, 1358–1367; f) W. Yang, A. S. K.
Hashmi, Chem. Soc. Rev. 2014, 43, 2941–2955; g) T. Cañeque, F. M.
Truscott, R. Rodriguez, G. Maestri, M. Malacria, Chem. Soc. Rev. 2014,
43, 2916–2926; h) J. L. Mascareñas, I. Varela, F. López, Acc. Chem.
Res. 2019, 52, 465–479.
[14] For a 1,5–H shift via vinyl cation intermediate, see: a) U. Biermann, R.
Koch, J. O. Metzger, Angew. Chem. 2006, 118, 3146–3150; Angew.
Chem. Int. Ed. 2006, 45, 3076–3079; b) T. Jin, M. Himuro, Y.
Yamamoto, J. Am. Chem. Soc. 2010, 132, 5590–5591; c) F. Zhang, S.
Das, A. J. Walkinshaw, A. Casitas, M. Taylor, M. G. Suero, M. J. Gaunt,
J. Am. Chem. Soc. 2014, 136, 8851–8854; d) Z. Zheng, L. Zhang, Org.
Chem. Front. 2015, 2, 1556–1560; e) P. D. Nahide, J. O. C. Jiménez-
Halla, K. Wrobel, C. R. Solorio-Alvarado, R. Ortiz Alvarado, B.
Yahuaca-Juárez, Org. Biomol. Chem. 2018, 16, 7330–7335.
[3]
a) M. R. Luzung, P. Mauleón, F. D. Toste, J. Am. Chem. Soc. 2007,
129, 12402–12403; b) H. Teller, S. Flügge, R. Goddard, A. Fürstner,
Angew. Chem. 2010, 122, 1993–1997; Angew. Chem. Int. Ed. 2010, 49,
1949–1953; c) M. Alcarazo, T. Stork, A. Anoop, W. Thiel, A. Fürstner,
[15] C-H insertion mechanism would be another possible reaction pathway,
see ref. 14d.
This article is protected by copyright. All rights reserved.