144
R. Ustabaßs et al. / Journal of Molecular Structure 984 (2010) 137–145
negative region. A maximum positive region localized on the
N2AH2 bond has value of +0.072 a.u. indicating a possible site
for nucleophilic attack. Considering these calculated results, the
MEP map shows that the negative potential sites are on electroneg-
ative, and positive potential sites around hydrogen atoms, respec-
tively. These sites give the information about the region from
where the compound can have intermolecular interactions. So,
Fig. 8 confirms the existence of intermolecular NAHꢂ ꢂ ꢂN and
CAHꢂ ꢂ ꢂO interactions.
compound (3). The considerable differences between experimental
and calculated results of IR and NMR can be attributed to the exis-
tence of NAHꢂ ꢂ ꢂN and CAHꢂ ꢂ ꢂO type intermolecular hydrogen
bonds in the crystal structure. The MEP map shows that the nega-
tive potential sites are on oxygen atoms as well as the positive po-
tential sites are around the hydrogen atoms and so MEP map
confirms the existence of intermolecular NAHꢂ ꢂ ꢂN and CAHꢂꢂꢂO
interactions. HOMO–LUMO gap with 4.97 eV indicates that the ti-
tle compound (3) has a good stability and a high chemical
hardness.
3.6. Frontier molecular orbitals
5. Supplementary data
The distributions and energy levels of the frontier molecular
orbitals (FMOs) were computed at the B3LYP/6-31G(d) level for
the title compound (3) and are shown in Fig. 9. As can be seen from
Fig. 9, while LUMO + 1 is principally delocalized among the atoms
of imidazol group, LUMO is delocalized among the atoms of both
triazol and imidazol groups. HOMO ꢀ 1 orbitals mainly localized
on the triazol and imidazol fragments, and HOMO is mainly local-
ized on the benzene fragment. Both the highest occupied molecu-
lar orbitals (HOMOs) and the lowest-lying unoccupied molecular
orbitals (LUMOs) are mainly localized on the rings indicating that
CCDC-757066 contains the supplementary crystallographic
data for the compound reported in this paper. These data can be
ing.html [or from the Cambridge Crystallographic Data Centre
(CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)
1223–336033; e-mail: deposit@ccdc.cam.ac.uk].
Acknowledgements
the HOMO–LUMO are mostly the
p-antibonding type orbitals
This study was supported by grants from Karadeniz Technical
University (Project No: 2007.111.002.11) and the scientific and
technological research council (TUBITAK Project No: 107T065) of
Turkey.
[44]. The magnitude of the energy separation between the HOMO
and LUMO is 4.97 eV. This large HOMO–LUMO gap is an indication
of a good stability and a high chemical hardness for the title com-
pound (3), means high excitation energies for many of excited
states.
References
[1] G. Heubach, B. Sachse Buerstell, H. Ger. Offen. 2 (1979) 760–826.
[2] G. Tanaka, Japan Kokai 973 (1974) 7495.
4. Conclusions
[3] D.A. Griffin, S.K. Mannion, Eur. Pat. Appl. EP 199 (1986) 474.
[4] N.B. Hanna, S.D. Dimitrijevich, S.B. Larson, R.K. Robsin, G.R. Revankar, J.
Heterocycl. Chem. 25 (1988) 1857.
[5] B.T.C. Jenkins, I.J. Stratfort, Anticancer Drug Des. 4 (1989) 145–160.
[6] M.I. Husain, M. Amir, J. Indian Chem. Soc. 63 (1986) 317.
[7] S.H.L. Chiu, S.E.W. Huskey, Drug Metabol. Dispos. 26 (1998) 838.
[8] R. Eliott, R.L. Sunley, D.A. Griffin, UK Pat. Appl. GB 2 (1986) 175–301.
[9] P.E. Goss, K. Strasser-Weippl Best, Pract. Res. Clin. Endo. Met. 18 (2004) 113.
[10] Y. Ünver, E. Dugdu, K. Sancak, M. Er, Sß.A. Karaoglu, Turkish J. Chem. 33 (2009)
135.
4-(3-(1H-imidazol-1-yl) propyl)-5-p-tolyl-2H-1,2,4-triazol-3
(4H)-one (3) has been synthesized and characterized by IR, NMR,
and X-ray single-crystal diffraction. The crystal structure is stabi-
lized by NAHꢂ ꢂ ꢂN and CAHꢂ ꢂ ꢂO type hydrogen bonds. X-ray, FT-
IR and NMR spectral datas of the title compound (3) indicated that
the compound exists as keto form. The theoretical calculations per-
formed by DFT support the solid state structure. The conforma-
tional analysis study is considerably successful in determining
the conformational preferring obtained from X-ray of the title
[11] M. Clemons, R.E. Colemon, S. Verma, Cancer Treat. Rew. 30 (2004) 325.
_
[12] Y. Ünver, K. Sancak, H. Tanak, I. Deg˘irmenciog˘lu, E. Düg˘dü, M. Er, Sß. Isßık, J. Mol.
Struct. 936 (2009) 946.
[13] A. Narayana, D.R. Chapman, S.P. Upadhyaya, L. Bauer, J. Heterocycl. Chem. 30
(1993) 1404–1412.
[14] G. Menozzi, L. Mosti, C. Fossa, C. Murgioni, L.P. Colla, Farmaco 56 (2001) 633–640.
_
[15] K. Sancak, Y. Unver, H. Tanak, I. Deg˘irmenciog˘lu, E. Düg˘dü, M. Er, Sß. Ißsık, J. Incl.
Phenom. Macrocycl. Chem. 67 (2010) 325–334.
[16] A.R. Katritzky (Ed.), Comprehensive Heterocyclic Chemistry II, A Review of the
LITERATURE 1982–1995, vol.4, Elsevier Science Ltd., 1996, p. 127.
[17] Stoe Cie X-AREA (Version1.18) and X-RED32 (Version 1.04), Darmstadt,
Germany, 2002.
[18] G.M. Sheldrick, SHELXS97 and SHELXL97 University of Göttingen, Germany,
1997.
[19] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.
[20] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837–838.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Jr. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M.Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W.B. Gill, B. Johnson, W. Chen, M.W. Wong,C. Gonzalez, J.A.
Pople, GAUSSIAN 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
[22] P.J. Stephens, F.J. Devlin, C.F. Chablowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
11623–11627.
[23] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209.
[24] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 221.
[25] P. Politzer, S.J. Landry, T. Warnheim, Phys. Chem. 86 (1982) 4767, doi:10.1021/
Fig. 9. Molecular orbital surfaces and energy levels given in parantheses for the
HOMO ꢀ 1, HOMO, LUMO and LUMO + 1 of the title compound (3) computed at
B3LYP/6-31G(d) level.