PleaseRdSoCnoAtdavdajunsctems argins
Page 4 of 5
Journal Name
Scheme 3. Model reactions via Curtius rearrangement
COMMUNICATION
was realized by carrying out the reaction under N2 and adding
sodium boron hydride to the reaction tDoOIr:e1d0u.1c0e39/tCh5eRAi1n190si4tAu
generated ketone. By doing this, alcohol 13 was generated in good
yields as a mixture of three diastereomeric isomers. Although the
diastereoselectivity of the reduction need to be further improved,
the structure of 13 contains the side chain and correct substitution
pattern, which resembles the key structural features of the
originally assigned structure of yuremamine (1).
Conclusions
In conclusion, we have developed a direct annulation reaction
between indoles and α, β-unsaturated ketones, which allows for
the rapid assembly of densely substituted, highly functionalized
pyrrolo[1,2-a]indoles in a single step. Model reactions toward the
originally assigned structure of yuremamine were carried out,
leading to the successful construction of the core with required
functionality and the discovery of several interesting synthetic
transformations.
Notes and references
1
For selected 9H-pyrrolo[1,2-a]indoles synthesis: (a) A. Padwa,
J. R. Gasdaska, J. Am. Chem. Soc. 1986, 108, 1104; (b) S. J.
Hwang, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130,
16158; (c) S. J. Mahoney, E. Fillion, Chem. Eur. J. 2012, 18, 68;
(d) L. Hao, Y. Pan, T. Wang, M. Lin, L. Chen, Z. Zhan, Adv.
Synth. Catal. 2010, 352, 3215; (e) H. Liu, M. El-Salfiti, M.
Lautens, Angew. Chem. Int. Ed. 2012, 51, 9846; (f) H. Ren, P.
Knochel, Angew. Chem. Int. Ed. 2006, 45, 3462; (g) K. S.
Feldman, M. R. Iyer, D. K. Hester, II, Org. Lett. 2006, 8, 3113;
(h) X. Huang, S. Zhu, R. Shen, Adv. Synth. Catal. 2009, 351,
3118.
For selected references about mitomycins and mitosenes: (a)
H. Namiki, S. Chamberland, D. A. Gubler, R. M. Williams, Org.
Lett. 2007, 9, 5341; (b) A. L. Williams, J. M. Srinivasan, J. M.
Johnston, Org. Lett. 2006, 8, 6047; (c) R. S. Coleman, F.-X.
Felpin, W. Chen, J. Org. Chem. 2004, 69, 7309; (d) S. J.
Danishefsky, J. M. Schkeryantz, Synlett 1995, 475; (e) T.
Fukuyama, L. Yank, J. Am. Chem. Soc. 1989, 111, 8303; (f) T.
Fukuyama, F. Nakatsubo, A. J. Cocuzza, Y. Kishi, Tetrahedron
Lett. 1977, 4295; (g) Z. Zheng, M. Touve, J. Barnes, N. Reich, L.
Zhang, Angew. Chem. Int. Ed. 2014, 53, 9302; (h) G. R., Jr.
Allen, M. J. Weiss, J. Org. Chem. 1965, 30, 2904; (i) J. C.
Hodges, W. A. Remers, W. T. Bradner, J. Med. Chem. 1981,
24, 1184; (j) R. M. Coates, P. A. MacManus, J. Org. Chem.
1982, 47, 4822; (k) J. R. Luly, H. J. Rapoport, Org. Chem. 1984,
49, 1671.
Scheme 4. Model reactions via Baeyer-Villiger oxidation
2
3
4
J. J. Vepsalainen, S. Auriola, M. Tukiainen, N. Ropponen, J.
Callaway, Planta Med. 2005, 71, 1053.
The second model reaction for the synthesis of the core of 1
centered on the Baeyer-Villiger oxidation of aldehyde 10 and
related structural isomerization (Scheme 4). Compound 10 was
produced in good yield by a two step synthetic manipulation from
5g involving DIBAl-H reduction of the ester followed by Dess-Martin
oxidation of the resulted alcohol. The Baeyer-Villiger oxidation of 10
proceeded well in the presence of oxone, delivering 11 in 69% yield.
Under basic conditions, the deprotection and structural
isomerization of 11 did not occur to afford the desired ketone, but
instead 2, 3-disubstituted indole 12 was isolated as the major
product, presumably because that the electron rich system was
further oxidized by molecular oxygen. A solution to this problem
(a) M. B. Johansen, M. A. Kerr, Org. Lett. 2008, 10, 3497; (b)
D. V. Patil, M. A. Cavitt, S. France, Org. Lett. 2011, 13, 5820;
(c) K. Chen, Z. Zhang, Y. Wei, M. Shi, Chem. Commun. 2012,
48, 7696; (d) H-L. Cui, X. Feng, J. Peng, J. Lei, K. iang, Y-C.
Chen, Angew. Chem., Int. Ed. 2009, 48, 5737; (e) W. B. Liu, X.
Zhang, L. X. Dai, S. L. You, Angew. Chem. Int. Ed., 2012, 51,
5183; (f) D. H. Dethe, R. Boda, S. Das, Chem. Commun. 2013,
49, 3260.
M. B. Calvert, J. Sperry, Chem. Commun. 2015, 51, 6202.
(a) J. A. Joule, K. Mills, Heterocyclic Chemistry; 5th ed.;
Blackwell: Oxford, 2009. (b) T. Eicher, S. Hauptmann, The
Chemistry of Heterocycles; Wiley-VCH: Weinheim, 2003.
5
6
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins