Chemical Research in Toxicology
ARTICLE
’ ACKNOWLEDGMENT
(12) Kurz, T., Gustafsson, B., and Brunk, U. T. (2006) Intralysoso-
mal iron chelation protects against oxidative stress-induced cellular
damage. FEBS J. 273, 3106–3117.
(13) Lukinova, N., Iacovelli, J., Dentchev, T., Wolkow, N., Hunter,
A., Amado, D., Ying, G. S., Sparrow, J. R., and Dunaief, J. L. (2009) Iron
chelation protects the retinal pigment epithelial cell line ARPE-19
against cell death triggered by diverse stimuli. Invest. Ophthalmol. Vis.
Sci. 50, 1440–1447.
(14) Simunek, T., Boer, C., Bouwman, R. A., Vlasblom, R., Versteilen,
A. M., Sterba, M., Gersl, V., Hrdina, R., Ponka, P., de Lange, J. J., Paulus,
W. J., and Musters, R. J. (2005) SIH: a novel lipophilic iron chelator--
protects H9c2 cardiomyoblasts from oxidative stress-induced mitochon-
drial injury and cell death. J. Mol. Cell Cardiol. 39, 345–354.
(15) Bendova, P., Mackova, E., Haskova, P., Vavrova, A., Jirkovsky,
E., Sterba, M., Popelova, O., Kalinowski, D. S., Kovarikova, P., Vavrova,
K., Richardson, D. R., and Simunek, T. (2010) Comparison of clinically
used and experimental iron chelators for protection against oxidative
stress-induced cellular injury. Chem. Res. Toxicol. 23, 1105–1114.
(16) Simunek, T., Sterba, M., Popelova, O., Kaiserova, H., Adamcova,
M., Hroch, M., Haskova, P., Ponka, P., and Gersl, V. (2008) Anthracycline
toxicity to cardiomyocytes or cancer cells is differently affected by iron
chelation with salicylaldehyde isonicotinoyl hydrazone. Br. J. Pharmacol. 155,
138–148.
(17) Sterba, M., Popelova, O., Simunek, T., Mazurova, Y., Potacova,
A., Adamcova, M., Guncova, I., Kaiserova, H., Palicka, V., Ponka, P., and
Gersl, V. (2007) Iron chelation-afforded cardioprotection against
chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonico-
tinoyl hydrazone (SIH). Toxicology 235, 150–166.
(18) Berndt, C., Kurz, T., Selenius, M., Fernandes, A. P., Edgren,
M. R., and Brunk, U. T. (2010) Chelation of lysosomal iron protects
against ionizing irradiation. Biochem. J. 432, 295–301.
(19) Klimtova, I., Simunek, T., Mazurova, Y., Kaplanova, J., Sterba,
M., Hrdina, R., Gersl, V., Adamcova, M., and Ponka, P. (2003) A study of
potential toxic effects after repeated 10-week administration of a new
iron chelator--salicylaldehyde isonicotinoyl hydrazone (SIH) to rabbits.
Acta Med. (Hradec Kralove, Czech Repub.) 46, 163–170.
We thank Mrs. Alena Pakostova for her technical assistance in
the cell-culture laboratory.
’ ABBREVIATIONS
A2,4DHAPI, (E)-N0-[1-(5-acetyl-2,4-dixydroxyphenyl)ethyliden]-
isonicotinoylhydrazide; AHCI, (E)-N0-(1-(7-hydroxy-2-oxo-2H-
chromen-8-yl)ethylidene)isonicotinohydrazide; CHAPI, (E)-N0-
[1-(5-chloro-2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide;
DCF, dichlorofluorescein; DFO, desfferioxamine; 2,4DHAPI, (E)-
N0-[1-(2,4-dihydroxyphenyl)ethyliden]isonicotinoylhydrazide; 2,6-
DHAPI, (E)-N0-[1-(2,6-dihydroxyphenyl)ethyliden]isonicotinoyl-
hydrazide; DMEM, Dulbecco’smodified Eagle’smedium;EC50, con-
centration of chelator reducing the toxicity induced by 24-h incuba-
tion with tert-butyl hydroperoxide to 50% of the control (untreated)
cells; FAC, ferric-ammonium citrate; FAS, ferrous-diammonium sul-
fate;FBS, fetal bovine serum;Fe, iron;HAPI, (E)-N0-[1-(2-hydro-
xyphenyl)ethyliden]isonicotinoylhydrazide;H2DCF-DA, 20,70-di-
chlorodihydrofluorescein-diacetate; HPPI, (E)-N0-[1-(2-hydroxy-
phenyl)propyliden]isonicotinoylhydrazide; ICL670A, deferasirox;
ICRF-187, dexrazoxane; I.S., internal standard; L1 or CP20, defer-
iprone; LIP, labile iron pool; log P, logarithm of octanol/water parti-
tion coefficient; MHAPI, (E)-N0-[1-(2-hydroxy-4-methoxyphenyl)-
ethyliden]isonicotinoylhydrazide; MW, molecular weight; NHAPI,
(E)-N0-[1-(2-hydroxy-5-nitrophenyl)ethyliden]isonicotinoylhy-
drazide; NR, neutral red; PI, propidium iodide; PSA, polar surface
area; QSAR, quantitative structure-activity relationship; ROS, reac-
tive oxygen species; RT, room temperature; SIH, salicylaldehyde
isonicotinoyl hydrazone; t-BHP, tert-butyl hydroperoxide; TC50, con-
centration of the chelator inducing 50% viability reduction compared
to the control (untreated) cells following 72 h of incubation.
(20) Yiakouvaki, A., Savovic, J., Al-Qenaei, A., Dowden, J., and
Pourzand, C. (2006) Caged-iron chelators a novel approach towards
protecting skin cells against UVA-induced necrotic cell death. J. Invest.
Dermatol. 126, 2287–2295.
(21) Charkoudian, L. K., Dentchev, T., Lukinova, N., Wolkow, N.,
Dunaief, J. L., and Franz, K. J. (2008) Iron prochelator BSIH protects
retinal pigment epithelial cells against cell death induced by hydrogen
peroxide. J. Inorg. Biochem. 102, 2130–2135.
’ REFERENCES
(1) Halliwell, B., and Gutteridge, J. M. C. (2007) Free Radicals in
Biology and Medicine, 4th ed., Oxford University Press, Oxford, U.K.
(2) Griendling, K. K., and FitzGerald, G. A. (2003) Oxidative stress
and cardiovascular injury: Part I: basic mechanisms and in vivo
monitoring of ROS. Circulation 108, 1912–1916.
(3) Simunek, T., Sterba, M., Popelova, O., Adamcova, M., Hrdina, R.,
and Gersl, V. (2009) Anthracycline-induced cardiotoxicity: overview of
studies examining the roles of oxidative stress and free cellular iron.
Pharmacol. Rep. 61, 154–171.
(22) Charkoudian, L. K., Pham, D. M., and Franz, K. J. (2006) A pro-
chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl
radical formation. J. Am. Chem. Soc. 128, 12424–12425.
(23) Kovarikova, P., Klimes, J., Sterba, M., Popelova, O., Mokry, M.,
Gersl, V., and Ponka, P. (2005) Development of high-performance
liquid chromatographic determination of salicylaldehyde isonicotinoyl
hydrazone in rabbit plasma and application of this method to an in vivo
study. J. Sep. Sci. 28, 1300–1306.
(4) Mladenka, P., Simunek, T., Hubl, M., and Hrdina, R. (2006) The
role of reactive oxygen and nitrogen species in cellular iron metabolism.
Free Radical Res. 40, 263–272.
(5) Reif, D. W. (1992) Ferritin as a source of iron for oxidative
damage. Free Radical Biol. Med. 12, 417–427.
(24) Buss, J. L., and Ponka, P. (2003) Hydrolysis of pyridoxal iso-
nicotinoyl hydrazone and its analogs. Biochim. Biophys. Acta 1619, 177–186.
(25) Richardson, D., Vitolo, L. W., Baker, E., and Webb, J. (1989)
Pyridoxal isonicotinoyl hydrazone and analogues. Study of their stability
in acidic, neutral and basic aqueous solutions by ultraviolet-visible
spectrophotometry. BioMetals 2, 69–76.
(26) Kovarikova, P., Mokry, M., Klimes, J., and Vavrova, K. (2006)
HPLC study on stability of pyridoxal isonicotinoyl hydrazone. J. Pharm.
Biomed. Anal. 40, 105–112.
(6) Kalinowski, D. S., and Richardson, D. R. (2005) The evolution of
iron chelators for the treatment of iron overload disease and cancer.
Pharmacol. Rev. 57, 547–583.
(7) Olivieri, N. F., and Brittenham, G. M. (1997) Iron-chelating
therapy and the treatment of thalassemia. Blood 89, 739–761.
(8) Wood, J. C. (2008) Cardiac iron across different transfusion-
dependent diseases. Blood Rev. 22 (Suppl. 2), S14–S21.
(9) Galey, J. B. (2001) Recent advances in the design of iron
chelators against oxidative damage. Mini Rev. Med. Chem. 1, 233–242.
(10) Hasinoff, B. B., Hellmann, K., Herman, E. H., and Ferrans, V. J.
(1998) Chemical, biological and clinical aspects of dexrazoxane and
other bisdioxopiperazines. Curr. Med. Chem. 5, 1–28.
(27) Kovarikova, P., Mrkvickova, Z., and Klimes, J. (2008) Investi-
gation of the stability of aromatic hydrazones in plasma and related
biological material. J. Pharm. Biomed. Anal. 47, 360–370.
(11) Horackova, M., Ponka, P., and Byczko, Z. (2000) The anti-
oxidant effects of a novel iron chelator salicylaldehyde isonicotinoyl
hydrazone in the prevention of H(2)O(2) injury in adult cardiomyo-
cytes. Cardiovasc. Res. 47, 529–536.
(28) Simunek, T., Sterba, M., Popelova, O., Kaiserova, H., Potacova,
A., Adamcova, M., Mazurova, Y., Ponka, P., and Gersl, V. (2008)
Pyridoxal isonicotinoyl hydrazone (PIH) and its analogs as protectants
against anthracycline-induced cardiotoxicity. Hemoglobin 32, 207–215.
301
dx.doi.org/10.1021/tx100359t |Chem. Res. Toxicol. 2011, 24, 290–302