I. Kumar, C. V. Rode / Tetrahedron: Asymmetry 21 (2010) 2703–2708
2707
an additional 2 h at the same temperature. The reaction was mon-
itored by TLC and the solvent was evaporated at reduced pressure.
The crude mixture was washed with aqueous CuSO4 solution and
extracted with EtOAc (2 ꢀ 10 mL), dried over Na2SO4, and evapo-
rated in vacuo. The crude material was column chromatographed
over silica gel gave diacetyl compound 15 (0.53 g, 84% yield).
Crystal data for 17 (C17H23NO6): M = 337.36, Crystal dimensions
0.59 ꢀ 0.19 ꢀ 0.02 mm3, monoclinic, space group P21, a = 5.9264
(18), b = 17.946(6), c = 16.598(5) Å, b = 91.282(7)°, V = 1764.8(9)
Å3; Z = 4; T = 297(2) K,
q l (Mo-K ) = 0.096
calcd = 1.270 gcmꢂ3
, a
mmꢂ1, F(0 0 0) = 720, 2hmax = 46.00°, 18,905 reflections collected,
4907 unique, 3248 observed (I > 2 (I)) reflections, 173 refined
r
½
a 2D5
ꢁ
¼ þ13:95 (c 1, CHCl3), 1H NMR (400 MHz, CDCl3): d = 1.33 (s,
parameters, R value 0.2020, wR2 = 0.4396 (all data R = 0.2425,
wR2 = 0.4600), S = 1.528, minimum and maximum transmission
0.9454 and 0.9981, respectively, maximum and minimum residual
electron densities +0.858 and ꢂ1.053 e Åꢂ3. CCDC No 800567.
3H), 1.42 (s, 3H), 2.02 (s, 3H), 2.15 (s, 3H), 2.45 (s, 3H), 3.01–3.07
(m, 1H), 3.20–3.26 (m, 1H), 3.59–3.64 (m,1H), 4.16–4.20 (m, 1H),
4.21–4.26 (m, 1H), 4.31–4.36 (m, 1H), 4.79–4.84 (m, 2H), 7.32 (d,
J = 8.0 Hz, 2H), 7.75 (d, J = 8.3 Hz, 2H). 13C NMR (75 MHz, CDCl3):
d = 20.72, 20.75 (overlapped), 21.48, 26.42, 26.48 (overlapped),
43.85 (dept), 53.62, 59.11 (dept), 70.36, 73.74, 76.72, 111.61,
126.97, 129.79, 137.26, 143.98, 169.59, 170.60. LC–MS (ESI-TOF):
m/z [M+H]+ 442.12, [M+Na]+ 464.09.
Acknowledgments
One of the authors, I.K. thanks CSIR, New Delhi for senior re-
search fellowship. We also thank specially Dr. Rajmohan for exten-
sive NMR studies and Dr. S. R. Bahdbhade for the X-ray structure
study.
4.9. ((3aS,7aS)-2,2-Dimethyl-5-tosyl-3a,4,5,7a-tetrahydro-
[1,3]dioxolo[4,5-c]pyridine-6-yl)methyl acetate (16)
References
Similar to the previous method using AcCl (1.1 equiv) (85% yield
from 14). Compound 16: ½a D25
ꢁ
¼ þ187:7 (c 1, CHCl3), 1H NMR
1. (a)Aldol Reaction; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; Vols. 1 and
2, (b) Carreira, E. M. Mukaiyama Aldol Reaction In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. III,. Chapter 29.1 (c) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed.
2000, 39, 1352; (d) Alcaide, B.; Almendros, P. Angew. Chem., Int. Ed. 2003, 42,
858.
2. (a) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386; (b) List, B.; Pojarliev, P.;
Castello, C. Org. Lett. 2001, 3, 573; (c) List, B.; Lerner, R. A.; Barbas, C. F., III J.
Am. Chem. Soc. 2000, 122, 2395; (d) Houk, K. N.; List, B. Acc. Chem. Res. 2004,
37, 487; (e) List, B.; Bolm, C. Adv. Synth. Catal. 2004, 346, 1007; (f) Berkessel,
A.; Gröger, H. Asymmetric Organocatalysis: From Bio-mimetic Concept to
Application in Asymmetric synthesis; Wiley-VCH: Weinheim, 2005; (g)
Kocovsky, P.; Malkov, A. V. Tetrahedron 2006, 62, 243.
(200 MHz, CDCl3): d = 1.25 (s, 3H), 1.36 (s, 3H), 2.06 (s, 3H), 2.42
(s, 3H), 3.10–3.22 (m, 1H), 3.30–3.51 (m, 2H), 3.87–3.94 (m, 1H),
4.78–5.06 (dd, J = 14 Hz, 1H), 5.77 (s, 1H), 7.32 (d, J = 8.0 Hz, 2H),
7.69 (d, J = 8.3 Hz, 2H). 13C NMR (75 MHz, CDCl3): d = 20.89,
21.60, 26.48, 26.72 (overlapped), 47.54 (dept), 64.27 (dept),
75.06, 76.57, 113.53, 116.24, 127.15, 129.89, 133.41, 134.61,
144.42. LC–MS (ESI-TOF): m/z [M+H]+ 382.24, [M+Na]+ 404.22.
4.10. (3aS,6S,7R,7aS)-Benzyl 7-hydroxy-6-(hydroxymethyl)-2,2-
dimethyltetrahydro-[1,3]dioxolo [4,5-c]pyridine-5(6H)-
carboxylate (17)
3. (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 496; (b)
Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
4. Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew. Chem., Int. Ed. 2003, 42,
2785.
5. (a) Hoffmann, R. W. Angew. Chem., Int. Ed. 2003, 42, 1069; (b) Mans, D. M.;
Crystals of 17 obtained from cyclized compound 13 were thin in
the third dimension. Intensity data measurements were carried out
at room temperature (297 K) on a Bruker SMART APEX CCD diffrac-
Pearson, W. H. Org. Lett. 2004, 6, 3305; For
a related diastereoselective
aldolization, see: (c) Kaden, S.; Reissig, H.-U. Org. Lett. 2006, 8, 4763.
6. Ishida, N.; Kumagai, K.; Nidda, T.; Tsuruaka, T.; Yumato, H. J. Antibiot. 1967, 20,
66.
tometer with graphite-monochromatized (Mo
radiation. The X-ray generator was operated at 50 kV and 30 mA.
Data were collected with scan width of 0.3° at four different set-
tings of (0°, 90°, 180° and 270°) keeping the sample-to-detector
K = 0.71073 Å)
a
7. (a) Ganem, B. Acc. Chem. Res. 1996, 29, 340; (b) Heightman, T. D.; Vasella, A. T.
Angew. Chem., Int. Ed. 1999, 38, 750; (c) Sears, P.; Wong, C. –H. Angew. Chem.,
Int. Ed. 1999, 38, 2300; (d) Bols, M. Acc. Chem. Res. 1998, 31, 1; (e) Zechel, D. L.;
Withers, S. G. Acc. Chem. Res. 2000, 33, 11; (f) Stutz, A. E. Iminosugars as
Glycosidase Inhibitors: Nojirimycin and Beyond; Wiley-VCH: Weinheim,
Germany, 1999; (g) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem.
Rev. 2000, 102, 515; (h) Nishimura, Y.; Shitara, E.; Adachi, H.; Toyoshima, M.;
Nakajima, M.; Okami, Y.; Takeuchi, T. J. Org. Chem. 2000, 65, 2; (i) Felpin, F.-X.;
Lebreton, J. Eur. J. Org. Chem. 2003, 3693–3712; (j) Afrainkia, K.; Bahar, A.
Tetrahedron: Asymmetry 2005, 16, 1239–1287.
8. (a) Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A.
Diab. Med. 1998, 15, 657; (b) Scott, L. J.; Spencer, C. M. Drugs 2000, 59, 521.
9. Butters, T. D.; Dwek, R. A.; Platt, F. M. Curr. Top. Med. Chem. 2003, 3, 561.
10. Jacob, G. S. Curr. Opin. Struct. Biol. 1995, 5, 605. and references cited therein.
11. (a) Mehta, A.; Ouzounov, S.; Jordan, R.; Simsek, E.; Lu, X. Y.; Moriarty, R. M.;
Jacob, G.; Dwek, R. A.; Block, T. M. Antiviral Res. 2003, 57, 56; (b) Greimel,
P.; Spreitz, J.; Stütz, A. E.; Wrodnigg, T. M. Curr. Top. Med. Chem. 2003, 3,
513.
x
u
distance fixed at 6.145 cm and the detector position (2h) fixed at
ꢂ28°. The X-ray data collection was monitored by SMART program
(Bruker, 2003). Only low angle very weak reflections were ob-
served during data collection. All the data were corrected for
Lorentzian, polarization, and absorption effects using SAINT and
SADABS programs (Bruker, 2003). SHELX-97 was used for structure
solution and full matrix least-squares refinement on F2.
12. (a) Zitzmann, N.; Mehta, A. S.; Carroue´e, S.; Butters, T. D.; Platt, F. M.; McCauley,
J.; Blumberg, B. S.; Dwek, R. A.; Block, T. M. PNAS 1999, 96, 11878; (b)
Nishimura, Y. Curr. Top. Med. Chem. 2003, 3, 575.
13. (a) Vasella, A.; Davies, G. J.; Böhm, M. Curr. Opin. Chem. Biol. 2002, 6, 619; (b)
Yip, V. L. Y.; Withers, S. G. Org. Biomol. Chem. 2004, 2, 2707–2713.
14. Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199–210.
15. Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N. Nat. Rev. Drug. Disc. 2002, 1,
65–75.
16. (a) Kumar, I.; Rode, C. V. Tetrahedron: Asymmetry 2006, 17, 763–766; (b) Kumar,
I.; Bhide, S. R.; Rode, C. V. Tetrahedron: Asymmetry 2007, 18, 1210–1216; (c)
Kumar, I.; Rode, C. V. Tetrahedron: Asymmetry 2007, 18, 1975–1980; (d) Kumar,
I.; Rode, C. V., Unpublished results.
17. (a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798–6799;
(b) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861–
863; (c) Enders, D.; Huttl, M. R. M.; Raabe, G.; Bats, J. W. Adv. Synth. Catal. 2008,
350, 267–279.
18. (a) Enders, D.; Arun, A. N. J. Org. Chem. 2008, 73, 7857–7870; (b) Calderon, F.;
Doyaguez, E. G.; Cheong, P. H.-Y.; Mayoralas, A. F.; Houk, K. N. J. Org. Chem.
2008, 73, 7916–7920.