M. Ghandi et al. / Tetrahedron Letters 52 (2011) 270–273
273
another 3 h. The progress of the reaction was monitored by TLC. After
completion, aq. NaOH (10 mL, 0.1 M) was added in order to neutralize the
acidic salts. The organic phase was separated, washed with brine (10 mL), and
dried over anhydrous Na2SO4. The solvent was evaporated under reduced
pressure and the residue purified by column chromatography (silica gel, 10%
EtOAc in hexane) to afford 2a as a white solid (480 mg, 96%).
and unreactive compounds in comparison to triflates 3 derived
from amides 1 (see Scheme 1).19 In contrast to compounds 3 which
are easily converted into intermediates 4 (see Scheme 1), triflate 6
persists in the reaction medium until it attacks the 2-naphthol.
Compared to 4 which is a hard electrophile, triflate 6 is a soft spe-
cies which reacts with 2-naphthol via formation of a C–C bond to
give 2q.20
In conclusion, we have developed a new one-pot synthesis of N-
arylimidates via reaction of 2-naphthol with activated secondary
amides using Tf2O and 2-ClPyr. With the exception of oxindole,
reaction of which proceeds via C–C bond formation to give 1-
(1H-indol-2-yl)naphthalene-2-ol (2q), the other amides investi-
gated in this study afforded N-arylimidates via formation of a C–
O bond.
12. Naphthalen-2-yl N-4-methoxyphenylpivalimidate (2a): White crystals, mp: 64–
65 °C; 1H NMR (500 MHz, CDCl3) d 1.47 (s, 9H), 3.57 (s, 3H), 6.55 (d, J = 8.3 Hz,
2H), 6.82 (d, J = 8.3 Hz, 2H), 7.02 (br d, J = 8.6 Hz, 1H), 7.10 (br s, 1H), 7.30–7.71
(m, 5H); 13C NMR (125 MHz, CDCl3) d 28.5, 39.7, 55.7, 114.0, 118.9, 121.4,
123.1, 124.7, 126.7, 127.3, 127.4, 128.0, 129.5, 130.1, 134.3, 139.6, 152.7 (C–O),
156.1 (C@N); IR (KBr) m: 3252 (w), 3054 (w), 2969 (m), 1672 (s), 1503 (s), 1242
(s), 1080 (s) cmÀ1; MS (EI) m/z: 333 (M+, 8), 190 (100), 134 (87), 115 (12), 77
(7), 57 (22). Anal. Calcd for C22H23NO2: C, 79.25; H, 6.95; N, 4.20. Found: C,
79.34; H, 6.89; N, 3.96.
13. No signal due to the OH group was evident in the IR and 1H NMR spectra of 2a.
Compared to 2-[(phenylimino)methyl)]naphthalene-1-ol which displays the
imine carbon at d 172.3 in the 13C NMR spectra,21 the analogous carbon signal
of 2a appears at d 156.1.12 The internal hydrogen bonding between the OH and
imine nitrogen in the former seems to be responsible for deshielding the C@N.
Based on X-ray crystallography results obtained for 1-[(3,5-dichlorophenyl-
imino)methyl)]naphthalen-2-ol, the presence of internal hydrogen bonding
between the C@N nitrogen and OH was substantiated.22 More importantly, the
appearance of the most abundant ion (or base peak) at m/z 190 in the mass
spectrum12 of 2a reveals that the parent ion had mainly undergone C–O fission,
leading to nitrilium ion 5 (Scheme 1, R1 = MeO–C6H4–, R2 = (CH3)3C–). On the
other hand, observation of a low abundant nitrilum ion similar to 5 in the mass
spectrum of 1-[(2-aminophenylimino)methyl]naphthalen-2-ol indicated that
C–C fission is not a dominant fragmentation pathway in this imine.23
14. Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341–1344.
15. Hendrickson, J. B.; Hussoin, M. D. J. Org. Chem. 1987, 52, 4137–4139.
16. Naphthalen-1-yl N-p-tolylpivalimidate (2n): White crystals, mp: 59–60 °C; 1H
NMR (500 MHz, CDCl3) d 1.51 (s, 9H), 2.05 (s, 3H), 6.68 (br s, 4H), 6.78 (s, 1H),
7.17 (t, J = 7.8, 1H), 7.39 (d, J = 7.8, 1H), 7.47–8.17 (m, 4H); 13C NMR (125 MHz,
CDCl3) d 21.0, 28.7, 40.0, 112.5, 121.1, 122.2, 122.9, 123.2, 125.5, 125.8, 126.5,
Acknowledgment
The authors acknowledge the University of Tehran for financial
support of this research.
References and notes
1. (a) Chapman, A. W. J. Chem. Soc. 1925, 127, 1992; (b) Dauben, W. G.; Hodgson,
R. L. J. Am. Chem. Soc. 1950, 72, 3479; (c) Relles, H. M. J. Org. Chem. 1968, 33,
2245; (d) Burdukovskii, V. F.; Mognonov, D. M.; Allayarov, S. R.; Botoeva, S. O.;
Mazurevskaya, Z. P. Russ. Chem. Bull. 2004, 53, 1773; (e) Barclay, R. J. Can. J.
Chem. 1965, 43, 2125–2131.
2. (a) Oxley, S. J. Chem. Soc. 1948, 1514–1522; (b) Titus, P. E. Can. J. Chem. 1976, 54,
647–650.
128.0, 129.0, 132.6, 134.9, 144.5, 150.4 (C–O), 162.6 (C@N); IR (KBr) m: 3056
(w), 2972 (m), 2868 (w), 1666 (s), 1463 (m), 1207 (s), 1077 (s) cmÀ1; MS (EI) m/
z: 317 (M+, 12), 174 (100), 118 (93), 91 (19), 57 (16%). Anal. Calcd for
3. (a) Burdukovskii, V. F.; Mognonov, D. M. Russ. Chem. Bull. 2008, 57, 1247–1251;
(b) Chapman, A. W. J. Chem. Soc. 1927, 1748; (c) Sechaud, J. Helv. Chim. Acta
1956, 39, 1257–1260; (d) Rowe, J. E. Synthesis 1980, 114–115; (e) Ruane, P. H.;
Ahmed, A. R.; McClelland, R. A. J. Chem. Soc., Perkin Trans. 2 2002, 312–317.
4. Schenck, T. G.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2058–2066.
5. Kantlehner, W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: New York, 1991; Vol. 6, p 485.
6. (a) Meerwein, H.; Laasch, P.; Mersch, R.; Spille, J. Ber. 1956, 89, 224; (b) Gordon,
J.; Turrell, G. J. Org. Chem. 1959, 24, 269–271; (c) Mistryukov, E. A.; Sorokina, O.
N. Mendeleev Commun. 1998, 8, 153–154; (d) Chen, S.; Zhang, X.; Ma, H.; Lu, Y.;
Zhang, Z.; Li, H.; Lu, Z.; Cui, N.; Hu, Y. J. Organomet. Chem. 2005, 690, 4184–
4191.
7. (a) Shishkin, E. V.; Safonov, S. A.; Shishkin, V. E. Russ. J. Gen. Chem. 1999, 69,
843–844; (b) Shishkin, E. V.; Isleim, K. I.; Tkhankom, P.; Shishkin, V. E. Russ. J.
Org. Chem. 1998, 34, 1792–1793; (c) Burdukovskii, V. F.; Mognonov, D. M.;
Botoeva, S. O.; Mazurevskaya, Z. P. Russ. J. Appl. Chem. 2006, 79, 430–432.
8. Manley, P. J.; Bilodeau, M. T. Org. Lett. 2002, 4, 3127–3129.
9. (a) Charette, A. B.; Grenon, M. Tetrahedron Lett. 2000, 41, 1677; (b) Charette, A.
B.; Chua, P. J. Org. Chem. 1998, 63, 908; (c) Charette, A. B.; Chua, P. Tetrahedron
Lett. 1998, 39, 245; (d) Charette, A. B.; Chua, P. Tetrahedron Lett. 1997, 38, 8499.
10. (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592; (b)
Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254; (c)
Movassaghi, M.; Hill, M.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096.
11. Modified procedure for the preparation of naphthalen-2-yl N-4-
methoxyphenylpivalimidate (2a): A solution of amide 1a (310 mg, 1.5 mmol,
C
22H23NO: C, 83.24; H, 7.30; N, 4.41. Found: C, 83.27; H, 7.21; N, 4.28.
17. 4-tert-Butylphenyl N-p-tolylpivalimidate (2o): White crystals, mp: 71–72 °C; 1
H
NMR (500 MHz, CDCl3) d 1.25 (s, 9H), 1.42 (s, 9H), 2.17 (s, 3H), 6.56 (d, J = 8.2,
2H), 6.67 (br s, 2H), 6.80 (d, J = 7.4, 2H), 7.06 (br s, 2H); 13C NMR (125 MHz,
CDCl3) d 21.1, 28.6, 31.8, 34.5, 39.5, 118.8, 121.4, 125.9, 128.9, 132.0, 144.3,
146.5, 152.8, 163.6; IR (KBr) m: 2963 (m), 1668 (s), 1503 (s), 1214 (s), 1082 (s),
819 (s) cmÀ1; MS (EI) m/z: 323 (M+, 6), 174 (100), 118 (94), 91 (24), 57 (13%);
Anal. Calcd for C22H29NO: C, 81.69; H, 9.04; N, 4.33. Found: C, 81.76; H, 9.37; N,
4.88.
18. 1-(1H-Indol-2-yl)naphthalen-2-ol (2q): White crystals, mp: 171–172 °C; 1H
NMR (500 MHz, CDCl3) d 6.15 (br s, 1H, OH), 6.82 (s, 1H), 7.27 (t, J = 7.9, 1H),
7.31 (m, 2H), 7.42 (m, 2H), 7.49 (d, J = 8.2, 1H), 7.72 (d, J = 8.2, 1H), 7.78 (d,
J = 7.9, 1H), 7.88 (t, J = 8.9, 2H), 8.23 (br s, 1H, NH); 13C NMR (125 MHz, CDCl3) d
105.0, 111.6, 112.3, 117.7, 121.0, 121.2, 123.3, 124.1, 124.7, 127.7, 128.7, 129.1,
129.3, 130.7, 131.4, 133.8, 137.5, 152.6; IR (KBr) m: 3451 (s, OH), 3344 (s, NH),
3049 (w), 1589 (m), 1340 (s), 1199 (s) cmÀ1; MS (EI) m/z: 259 (M+, 100), 230
(28), 202 (12), 120 (8%); Anal. Calcd for C18H13NO: C, 83.37; H, 5.05; N, 5.40.
Found: C, 83.41; H, 5.12; N, 5.44.
19. Nenajdenko, V. G.; Balenkova, E. S.; Baraznenok, I. L. Tetrahedron 2000, 56,
3077–3119.
20. Black, D. S.; Ivory, A. J.; Kumar, N. Tetrahedron 1996, 52, 4697–4708.
21. Nedeltcheva, D.; Kamounah, F. S.; Mirolo, L.; Fromm, K. M.; Antonov, L. Dyes
Pigments 2009, 83, 121–126.
22. Elmali, A.; Elerman, Y.; Svoboda, I.; Fuess, H. Acta Crystallogr., Sect. C 1998, 54,
974–976.
23. Sondhi, S. M.; Singh, N.; Kumar, A.; Lozachc, O.; Meijer, L. Bioorg. Med. Chem.
2006, 14, 3758–3765.
1 equiv) and 2-ClPyr (169
lL, 1.8 mmol, 1.2 equiv) in CH2Cl2 (10 mL) was
cooled to À78 °C with dry ice in acetone, and Tf2O (277
l
L, 1.65 mmol,
1.1 equiv) was added via syringe under an argon atmosphere. After 5 min, the
reaction mixture was warmed to 0 °C and 2-naphthol (216 mg, 1.5 mmol,
1 equiv) was added. The mixture was allowed to warm to 25 °C and stirred for