LETTER
1,4-Addition of Cyanide
3367
(2) (a) Brock, S.; Hose, D. R. J.; Moseley, J. D.; Parker, A. J.;
Patel, I.; Williams, A. J. Org. Process Res. Dev. 2008, 12,
496. (b) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103,
2829.
(3) (a) Harutyunyan, S. R.; Hartog, T.; Geurts, K.; Minnaard,
A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
(b) López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem.
Res. 2007, 40, 179. (c) Feringa, B. L. Acc. Chem. Res. 2000,
33, 346.
(4) For recent examples used conjugate hydrocyanation of
enones in syntheses of active molecules, see: (a) Nicolaou,
K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria,
G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.;
Edmonds, D. J. J. Am. Chem. Soc. 2008, 130, 13110.
(b) Vázquez-Romero, A.; Rodríguez, J.; Lledó, A.;
Verdaguer, X.; Riera, A. Org. Lett. 2008, 10, 4509.
(c) Winkler, M.; Knall, A. C.; Kulterer, M. R.; Klempier, N.
J. Org. Chem. 2007, 72, 7423. (d) Hegedus, L. S.; Cross, J.
J. Org. Chem. 2004, 69, 8492.
(5) For recent examples used conjugate hydrocyanation of
enones in syntheses of natural products, see: (a) Siwicka,
A.; Cuperly, D.; Tedeschi, L.; Le Vézouët, R.; White,
A. J. P.; Barrett, A. G. M. Tetrahedron 2007, 63, 5903.
(b) Muratake, H.; Natsume, M. Tetrahedron 2006, 62, 7071.
(c) Mander, L. N.; Thomson, R. J. J. Org. Chem. 2005, 70,
1654. (d) Rahman, S. M. A.; Ohno, H.; Yoshino, H.; Satoh,
N.; Tsukaguchi, M.; Murakami, K.; Iwata, C.; Maezaki, N.;
Tanaka, T. Tetrahedron 2001, 57, 127. (e) Rahman, S. M.
A.; Ohno, H.; Maezaki, N.; Iwata, C.; Tanaka, T. Org. Lett.
2000, 2, 2893.
(6) Using TMSCN, see: Utimoto, K.; Obayashi, M.;
Shishiyama, Y.; Inoue, M.; Nozaki, H. Tetrahedron Lett.
1980, 21, 3389.
(7) Using Et2AlCN, see: Nagata, W.; Yoshioka, M. In Organic
Reactions, Vol. 25; Dauben, W. G., Ed.; Wiley and Sons:
New York, 1977, 255–476; and references cited therein.
(8) Hayashi, M.; Kawabata, H.; Shimono, S.; Kakehi, A.
Tetrahedron Lett. 2000, 41, 2591.
(9) (a) Utimoto, K.; Wakabayashi, Y.; Horiie, T.; Inoue, M.;
Shishiyama, Y.; Obayashi, M.; Nozaki, H. Tetrahedron
1983, 39, 967. (b) Gerus, I. I.; Kruchok, I. S.; Kukhar, V. P.
Tetrahedron Lett. 1999, 40, 5923.
Ed. 2005, 44, 1546. (c) Cerofolini, G. F. Appl. Surf. Sci.
1998, 133, 108. (d) Skancke, P. N. J. Phys. Chem. 1994, 98,
3154.
(17) CsF extensively used in organic synthesis. For examples of
CsF activating Si–C bond, see: (a) Mizuta, S.; Shibata, N.;
Hibino, M.; Nagano, S.; Nakamura, S.; Toru, T. Tetrahedron
2007, 63, 8521. (b) Ishizaki, M.; Hoshino, O. Tetrahedron
2000, 56, 8813. (c) Singh, R. P.; Kirchmeier, R. L.; Shreeve,
J. M. Org. Lett. 1999, 1, 1047. (d) Singh, R. P.; Cao, G. F.;
Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64,
2873. For examples of CsF-catalyzed silylcyanation of
ketones, see: (e) Kim, S. S.; Song, D. H. Lett. Org. Chem.
2004, 1, 264. (f) Kim, S. S.; Rajagopal, G.; Song, D. H.
J. Organomet. Chem. 2004, 689, 1734. For examples of
CsF-catalyzed Michael reaction, see: (g) Ishikawa, T.; Oku,
Y.; Kotake, K.-I.; Ishii, H. J. Org. Chem. 1996, 61, 6484.
(h) Ostaszynski, A.; Wielgat, J.; Urbanski, T. Tetrahedron
1969, 25, 1929.
(18) (a) Cohen, R. J.; Fox, D. L.; Salvatore, R. N. J. Org. Chem.
2004, 69, 4265. (b) Salvatore, R. N.; Nagle, A. S.; Jung,
K. W. J. Org. Chem. 2002, 67, 674. (c) Ostrowicki, A.;
Vögtle, F. Topics in Current Chemistry, Vol. 161; Weber,
E.; Vögtle, F., Eds.; Springer: Heidelberg, 1992, 37.
(d) Galli, C. Org. Prep. Proced. Int. 1992, 24, 285.
(19) See Supporting Information.
(20) For discussions about the role of water in organic reactions,
see: (a) Marcus, Y. Chem. Rev. 2009, 109, 1346.
(b) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
(c) Blackmond, D. G.; Armstrong, A.; Coombe, V.; Wells,
A. Angew. Chem. Int. Ed. 2007, 46, 3798. (d) Garrett, B. C.;
Dixon, D. A.; Camaioni, D. M.; Chipman, D. M.; Johnson,
M. A.; Jonah, C. D.; Kimmel, G. A.; Miller, J. H.; Rescigno,
T. N.; Rossky, P. J.; Xantheas, S. S.; Colson, S. D.; Laufer,
A. H.; Ray, D.; Barbara, P. F.; Bartels, D. M.; Becker, K. H.;
Bowen, K. H. Jr.; Bradforth, S. E.; Carmichael, I.; Coe, J. V.;
Corrales, L. R.; Cowin, J. P.; Dupuis, M.; Eisenthal, K. B.;
Franz, J. A.; Gutowski, M. S.; Jordan, K. D.; Kay, B. D.;
LaVerne, J. A.; Lymar, S. V.; Madey, T. E.; McCurdy, C.
W.; Meisel, D.; Mukamel, S.; Nilsson, A. R.; Orlando, T.
M.; Petrik, N. G.; Pimblott, S. M.; Rustad, J. R.; Schenter,
G. K.; Singer, S. J.; Tokmakoff, A.; Wang, L.-S.; Wittig, C.;
Zwier, T. S. Chem. Rev. 2005, 105, 355.
(10) Yadav, L. D. S.; Awasthi, C.; Rai, A. Tetrahedron Lett.
2008, 49, 6360.
(11) Iida, H.; Moromizato, T.; Hamana, H.; Matsumoto, K.
Tetrahedron Lett. 2007, 48, 2037.
(12) (a) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki,
M. J. Am. Chem. Soc. 2006, 128, 6312. (b) Yamatsugu, K.;
Kamijo, S.; Suto, Y.; Kanai, M.; Shibasaki, M. Tetrahedron
Lett. 2007, 48, 1403.
(13) Tanaka, Y.; Kanai, M.; Shibasaki, M. Synlett 2008, 2295.
(14) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2008, 130, 6072.
(15) For examples of asymmetric addition of TMSCN to other
a,b-unsaturated carbonyl compounds, see: (a) Mazet, C.;
Jacobsen, E. N. Angew. Chem. Int. Ed. 2008, 47, 1762.
(b) Madhavan, N.; Weck, M. Adv. Synth. Catal. 2008, 350,
419. (c) Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.;
Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63,
5820. (d) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2005, 127, 514. (e) Sammis, G. M.;
Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
9928. (f) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc.
2003, 125, 4442.
(21) Preparation of 2a
The solution of CsF (0.5 mg, 0.003 mmol, 1 mol%) and
enone (1a, 62.5 mg, 0.3 mmol) in dioxane (1 mL) is added
TMSCN (84 mL, 0.66 mmol, 2.2 equiv) and H2O (22 mL, 1.2
mmol, 4 equiv) subsequently in a dry Schlenk tube equipped
with cold finger under argon. The reaction mixture is stirred
at reflux temperature until the reaction is completed
(monitored by TLC). 1 M HCl (0.3 mL) is added to quench
the reaction with additional 20 min stirring at r.t. The
resulting mixture is extracted with EtOAc (5 mL) (Caution!
HCN generated in the reaction mixture is highly toxic. Those
operations should be conducted in a well-ventilated hood).
The extract is washed with H2O, brine, dried over anhyd
Na2SO4, and concentrated. The crude product is purified by
flash chromatography on silica gel (PE–EtOAc, 20:1) to
afford 2a as white solid in 99% yield.
Nitrile 2a: mp 120–122 °C (lit.: 122–125 °C).11 1H NMR
(400 MHz, CDCl3): d = 3.52 (dd, J = 6.0, 18.0 Hz, 1 H,
NCCHCHAHBCO), 3.74 (dd, J = 8.0, 18.0 Hz, 1 H,
NCCHCHAHBCO), 4.57 (dd, J = 6.0, 8.0 Hz, 1 H,
NCCHCHAHBCO), 7.34–7.49 (m, 7 H, ArH), 7.58–7.62 (m,
1 H, ArH), 7.92–7.94 (m, 2 H, ArH) ppm. 13C NMR (100
MHz, CDCl3): d = 31.9, 44.5, 120.6, 127.5, 128.1, 128.4,
128.8, 129.3, 133.9, 135.3, 135.8, 194.6 ppm. IR (KBr): n =
1681, 2236 cm–1.
(16) (a) Poisson, T.; Dalla, V.; Marsais, F.; Dupas, G.; Oudeyer,
S.; Levacher, V. Angew. Chem. Int. Ed. 2007, 46, 7090.
(b) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem. Int.
Synlett 2009, No. 20, 3365–3367 © Thieme Stuttgart · New York