Table 1 Selected computed DFT data for 2, 4, and 8
Orbital contributions to s
(HOMO ꢀ4) and p
U–Re bond
interaction
energy
Calculated U–Re and Nalewajski–
Complex
Atomic spin
densities
(averaged for N)
(HOMO ꢀ3) components
of the uranium–rhenium bond
(U/Re% contributions)
U–Namide (av.) bond Mrozek
lengths (A)
Atomic charges
bond indices (averaged for N)
(ref. 11 for
complex 2)
(kJ molꢀ1
)
U–Re
U–Namide U–Re U–N U Re
N
U
Re
N
s
Total
p
Total
2
4
8
3.0514 2.3032
3.0258 2.2965
3.0028 2.2632
1.15 1.34
1.18 1.34
1.30 1.37
+1.77 +0.36 ꢀ1.40 +2.28 ꢀ0.09 ꢀ0.05 11.3/54.4 65.7 10.4/58.8 69.2 ꢀ561.31
+2.15 +0.35 ꢀ1.38 +2.31 ꢀ0.09 ꢀ0.06 15.0/56.7 71.7 11.8/57.4 69.2 ꢀ599.53
+2.10 +0.30 ꢀ1.40 +2.37 ꢀ0.13 ꢀ0.07 17.5/57.3 74.8 13.1/56.6 69.7 ꢀ657.51
population analyses show that the spin densities at uranium
3
M = 943.40, monoclinic, a = 16.1847(4), b = 11.3466(2), c =
23.8954(5) A, b = 94.371(2)1, U = 4375.42(16) A3, T = 90 K, space
group P21/c, Z = 4, 44 442 reflections measured, 7716 unique reflections
(Rint = 0.027), R (F2 > 2s) = 0.0205, Rw (F2, all data) = 0.0532.
CCDC 777013. For 8: C41H56N3ReSi3U, M = 1099.39, monoclinic,
a = 15.9356(4), b = 15.1651(5), c = 33.4591(10) A, b = 91.052(3)1,
U = 8084.5(4) A3, T = 90 K, space group C2/c, Z = 8, 25 376
are consistently greater than would be expected for a H4 f2
uranium(IV) centre and were computed to be +2.28 (2), +2.31 (4),
and +2.37 (8). These values show a net transfer of electron
density to uranium, and that this increases from 2 to 4 to 8.
In line with this observation, the rhenium and nitrogen centres
exhibit small decreases in their computed spin densities.
Inspection of the Kohn–Sham orbitals of 4 and 8z shows
that, like 2, similar s- and p-components are present in the
U–Re bonds and they are localised to HOMOs ꢀ4 (principally
B54% Re 5dz2 and B15% U 6dz2 and 5fz3) and ꢀ3 (mainly
B56% Re 5dyz and B12% U 5dyz and 5fz2y) in each complex,
respectively. Analysis of the frontier orbitals involved in the
s-components (Table 1) shows that as Lewis base ancillaries
are removed the contributions to HOMO ꢀ4 from uranium-
and rhenium-based orbitals increase so the total contribution
to these molecular orbitals grows. In contrast, the total
contribution from uranium- and rhenium-based orbitals to the
HOMO ꢀ3 p-molecular orbital stays almost constant for 2, 4,
and 8 (Table 1). Thus, as uranium becomes more electron
deficient on moving from 2 to 4 to 8, the principal mechanism
by which this is ameliorated appears to be through the U–Re
s-bond. We examined the U–Re bonds in 2, 4, and 8 using energy
decomposition analyses and values are given in Table 1. This gave
calculated U–Re interaction energies of ꢀ561.31, ꢀ599.53, and
ꢀ657.51 kJ molꢀ1, respectively, for 2, 4, and 8, which follows the
anticipated trend as revealed by the U–Re bond distances.
To summarise, we have prepared two new U–Re complexes
by amine-elimination with systematic variation of the nature
and number of dative Lewis base ancillary ligands at uranium.
Combined experimental and theoretical analyses have given
insights into the perturbation of U–Re bonds by dative Lewis
base ancillary ligands. The data suggest that increased electron
deficiency at uranium is ameliorated principally through the
s-component of the U–Re bond, whilst the p-component
remains essentially invariant.
reflections measured, 7278 unique reflections (Rint
= 0.085),
R (F2 > 2s) = 0.0764, Rw (F2, all data) = 0.1824. CCDC 777014.
1 F. A. Cotton and R. A. Walton, Multiple Bonds between
Metal Atoms, Oxford University Press, New York, 2nd edn, 1993.
2 S. Green, C. Jones and A. Stasch, Science, 2007, 318, 1754.
3 (a) S. T. Liddle and D. P. Mills, Dalton Trans., 2009, 5592;
(b) S. T. Liddle, Philos. Trans. R. Soc., A, 2009, 465, 1673.
4 Spectroscopically characterised examples: (a) M. Santos,
J. Marc¸ alo, A. Pires de Matos, J. K. Gibson and R. G. Haire,
Eur. J. Inorg. Chem., 2006, 3346; (b) S. P. Nolan, M. Porchia and
T. J. Marks, Organometallics, 1991, 10, 1450; (c) M. Porchia,
N. Brianese, U. Casellato, F. Ossola, G. Rossetto, P. Zanella and
R. Graziani, J. Chem. Soc., Dalton Trans., 1989, 677;
(d) R. S. Sternal and T. J. Marks, Organometallics, 1987, 6, 2621;
(e) M. Porchia, F. Ossola, G. Rossetto, P. Zanella and N. Brianese,
J. Chem. Soc., Chem. Commun., 1987, 550; (f) R. L. Bennett,
M. I. Bruce and F. G. A. Stone, J. Organomet. Chem., 1971, 26, 355.
5 For Th–TM bonds see: (a) R. S. Sternal, C. P. Brock and
T. J. Marks, J. Am. Chem. Soc., 1985, 107, 8270; (b) P. J. Hay,
R. R. Ryan, K. V. Salazar, D. A. Wrobleski and A. P. Sattelberger,
J. Am. Chem. Soc., 1986, 108, 313; (c) J. M. Ritchey, A. J. Zozulin,
D. A. Wrobleski, R. R. Ryan, H. J. Wasserman, D. C. Moody and
R. T. Paine, J. Am. Chem. Soc., 1985, 107, 501.
6 P. L. Diaconescu, A. L. Odom, T. Agapie and C. C. Cummins,
Organometallics, 2001, 20, 4993.
7 M. Porchia, U. Casellato, F. Ossola, G. Rossetto, P. Zanella and
R. Graziani, J. Chem. Soc., Chem. Commun., 1986, 1034.
8 (a) S. G. Minasian, J. L. Krinsky, J. D. Rinehart, R. Copping,
T. Tyliszczak, M. Janousch, D. K. Shuh and J. Arnold, J. Am.
Chem. Soc., 2009, 131, 13767; (b) S. G. Minasian, J. L. Krinsky,
V. A. Williams and J. Arnold, J. Am. Chem. Soc., 2008, 130, 10086.
9 B. M. Gardner, J. McMaster, W. Lewis, A. J. Blake and
S. T. Liddle, J. Am. Chem. Soc., 2009, 131, 10388.
10 S. T. Liddle, J. McMaster, D. P. Mills, A. J. Blake, C. Jones and
W. D. Woodul, Angew. Chem., Int. Ed., 2009, 48, 1077.
11 B. M. Gardner, J. McMaster, W. Lewis and S. T. Liddle, Chem.
Commun., 2009, 2851.
12 D. Patel, W. Lewis, A. J. Blake and S. T. Liddle, Dalton Trans.,
2010, 39, 6638.
13 Amine-elimination afforded a U–Sn bond, see ref. 7. Alkane
elimination has afforded yttrium– and ytterbium–rhenium bonds,
see: M. V. Butovskii, O. L. Tok, F. R. Wagner and R. Kempe,
Angew. Chem., Int. Ed., 2008, 47, 6469.
We thank the Royal Society, the Engineering and Physical
Sciences Research Council, the European Research Council,
the University of Nottingham, and the UK National Nuclear
Laboratory for generously supporting this work.
14 M. L. H. Green, L. Pratt and G. Wilkinson, J. Chem. Soc., 1958,
3916.
15 I. Castro-Rodriguez, K. Olsen, P. Gantzel and K. Meyer, J. Am.
Chem. Soc., 2003, 125, 4565.
16 R. A. Andersen, Inorg. Chem., 1979, 18, 1507.
Notes and references
y Crystal data for 4: C45H64N3OReSi3Uꢂ0.5C6H14, M = 1214.58,
triclinic, a = 17.0448(4), b = 18.6938(4), c = 19.3062(5) A,
a = 63.838(3)1, b = 89.402(2)1, g = 63.080(2)1, U = 4783.5(2) A3,
17 The sum of uranium and rhenium covalent radii is calculated to be
3.01 A, see: P. Pyykko and M. Atsumi, Chem.–Eur. J., 2009, 15, 186.
ꢀ
T = 90 K, space group P1, Z = 2, 67 044 reflections measured,
¨
17 172 unique reflections (Rint = 0.100), R (F2 > 2s) = 0.0680,
18 A. Michalak, R. L. DeKock and T. Ziegler, J. Phys. Chem. A,
2008, 112, 7256.
Rw (F2, all data) = 0.1680. CCDC 777012. For 6: C37H64N4Si5U,
ꢁc
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 295–297 | 297