C O M M U N I C A T I O N S
selectivity of insertion into the Cγ-H bond versus the CR-Si bond
was also examined with aldehydes 1j-m10 containing methylene
and methine protons as well as an oxygen atom at the Cγ position.1c
Quite surprisingly, no competing insertion into insertion into the
Cγ-H protons or oxygen moiety11 was observed, and only
cyclopropenes 3j-m were isolated in good yields.
reactivity features an excellent selectivity for CR-Si bond insertion
rather than Cγ-H bond insertion or addition to γ,δ-double or -triple
bonds. The selectivity trend in Table 2 clearly indicates that the
R-oxygen in the tether significantly promotes Cγ-H insertion,
although the CR-Si bond insertion still competes effectively. It is
noteworthy that the reactivity of the C-H bond toward carbene
insertion depends intricately on electronic and steric factors and
cannot be predicted by the simple additive effect of contributing
factors.
Next, a variety of substrates carrying more strongly activated
Cγ-H bonds were explored (Table 2). Because of the especially
strong activating role of the R-oxygen in the tether for Cγ-H
insertion,1c the formation of both cyclopropene 3 via CR-Si bond
insertion and dihydrofuran 4 via Cγ-H insertion were expected.
When subjected to condition A followed by condition B, aldehyde
1n with Cγ-methylene protons provided a mixture of cyclopropene
3n and allylic silane-containing dihydrofuran 4n in a 1.2:1 ratio in
75% yield (entry 1). Similarly, aldehyde 1o afforded a mixture of
cyclopropene 3o and C-H insertion product 4o in a slightly higher
ratio (2.4:1) in 84% yield (entry 2). Surprisingly, aldehyde 1p with
allylic methylene protons yielded cyclopropene 3p and C-H
insertion product 4p in only a 2:1 ratio, despite the fact that allylic
C-H bonds are generally more activated toward carbene insertion
(entry 3). The effect of an alkyl substituent was examined using
methine-proton-containing substrate 1q, which, contrary to our
expectation, provided an even higher ratio (3.2:1) of cyclopropene
3q to C-H insertion product 4q (entry 4). Substrate 1r containing
a methine proton on a six-membered ring provided cyclopropane
3r and a slightly increased relative amount of insertion product 4r
(3r/4r ratio of 1.5:1) in 69% yield (entry 5).
Acknowledgment. We thank UIC and the donors of American
Chemical Society Petroleum Research Fund for financial support
of this work. The mass spectrometry facility at UIUC and Mr.
Furong Sun are greatly acknowledged.
Supporting Information Available: General procedures and char-
acterization data for representative compounds. This material is available
References
(1) (a) Taber, D. F. In Methods of Organic Chemistry, 4th ed.; Helmchen, G.,
Ed.; Georg Thieme Verlag: New York, 1995; Vol. E21, p 1127. (b) Knorr,
R. Chem. ReV. 2004, 104, 3795. (c) Yun, S. Y.; Zheng, J.-C.; Lee, D. J. Am.
Chem. Soc. 2009, 131, 8413, and references cited therein.
(2) For a related carbene insertion into a CR-H bond starting from a ketone,
see: Taber, D. F.; Yu, H. J. Org. Chem. 1997, 62, 1687.
(3) Reviews of cyclopropene chemistry: (a) Marek, I.; Simaan, S.; Masariva,
A. Angew. Chem., Int. Ed. 2007, 46, 7364. (b) Rubin, M.; Rubina, M.;
Gevorgyan, V. Chem. ReV. 2007, 107, 3117. (c) Fox, J. M.; Yan, N. Curr.
Org. Chem. 2005, 9, 719. (d) Baird, M. S. Chem. ReV. 2003, 103, 1271.
Most recent references: (e) Miege, F.; Meyer, C.; Cossy, J. Org. Lett. 2010,
12, 248. (f) Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M. J. Am. Chem. Soc.
2009, 131, 5382. (g) Hoveyda, A. H.; Lombardi, P. J.; O’Brien, R. V.;
Zhugralin, A. R. J. Am. Chem. Soc. 2009, 131, 8378. (h) Magnus, P.; Littich,
R. Org. Lett. 2009, 11, 3938. (i) Li, C.; Zeng, Y.; Wang, J. Tetrahedron
Lett. 2009, 50, 2956. (j) Alnasleh, B. K.; Sherrill, W. M.; Rubin, M. Org.
Lett. 2008, 10, 3231. (k) Singh, G.; Schrock, R. R. Macromolecules 2008,
41, 2990. (l) Bauer, J. T.; Hadfield, M. S.; Lee, A.-L. Chem. Commun.
2008, 6405.
Table 2. Selectivity for Cyclopropenation of R-Silyl Ketones
Containing Activated Protons at the Cγ Positiona
(4) For preparation of R-silyl ketones, see: (a) Hosomi, A.; Hayashida, H.;
Tominaga, Y. J. Org. Chem. 1989, 54, 3254. (b) Aoyama, T.; Shioiri, T.
Synthesis 1988, 228.
(5) The R-silyl ketones prepared with a catalytic amount of indium chloride
were quite pure, so additional purification steps were unnecessary. The
scope of this method will be reported elsewhere. Related examples with
MgBr2 were reported previously (see ref 4b).
(6) (a) Akiyama, M.; Isoda, Y.; Nishimoto, M.; Narazaki, M.; Oka, H.; Kuboki,
A.; Ohira, S. Tetrahedron Lett. 2006, 47, 2287. (b) Akiyama, M.; Awamura,
T.; Kimura, K.; Hosomi, Y.; Kobayashi, A.; Tsuji, K.; Kuboki, A.; Ohira,
S. Tetrahedron Lett. 2004, 45, 7133. (c) Aggarwal, V. K.; Sheldon, C. G.;
Macdonald, G. J.; Martin, W. P. J. Am. Chem. Soc. 2002, 124, 10300. (d)
Shioiri, T.; Aoyama, T. Synth. Org. Chem. Jpn. 1996, 54, 918. (e) Ohira,
S.; Okai, K.; Moritani, T. J. Chem. Soc., Chem. Commun. 1992, 721.
(7) For alternative methods of preparing silylated cyclopropenes, see: (a) Stoll,
A. T.; Negishi, E. Tetrahedron Lett. 1985, 26, 5671. (b) Fordyce, E. A. F.;
Wang, Y.; Luebbers, T.; Lam, H. W. Chem. Commun. 2008, 1124. (c)
Buchholz, H. A.; Prakash, G. K. S.; Deffieux, D.; Olah, G. A. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 10003. (d) Rubin, M.; Gevorgyan, V. Synthesis
2004, 796. For the chemistry of silylated cyclopropenes, see: (e) Chuprakov,
S.; Malyshev, D. A.; Trofimov, A.; Gevorgyan, V. J. Am. Chem. Soc. 2007,
129, 14868. (f) Pallerla, M. K.; Fox, J. M. Org. Lett. 2005, 7, 3593. (g)
Kirms, M. A.; Salcido, S. L.; Kirms, L. M. Tetrahedron Lett. 1995, 36,
7979. (h) Lee, G.-A.; Chang, C.-Y. Tetrahedron Lett. 1998, 39, 3013. (i)
Branan, B. M.; Wang, X.; Jankowski, P.; Wicha, J.; Paquette, L. A. J.
Org. Chem. 1994, 59, 6874.
(8) Aldehyde 1d was prepared from cyclooctadiene via epoxidation and NaIO4-
mediated cleavage. See: Binder, C. M.; Dixon, D. D.; Almaraz, E.; Tius,
M. A.; Singaram, B. Tetrahedron Lett. 2008, 49, 2764.
(9) (a) Rule, M.; Salinaro, R. F.; Pratt, D. R.; Berson, J. A. J. Am. Chem. Soc.
1982, 104, 2223. (b) Salinaro, R. F.; Berson, J. A. J. Am. Chem. Soc. 1979,
101, 7094.
a Conditions A and B are shown in Scheme 1. b Ratio determined by
1H NMR analysis of the crude products. c Combined isolated yield of
products 3 and 4. d A pure sample of 4q could not be obtained for full
characterization.
(10) For the preparation of 1k and 1m, see the Supporting Information and:
Tan, J.; Zhang, Z.; Wang, Z. Org. Biomol. Chem. 2008, 6, 1344.
(11) (a) Hari, Y.; Kondo, R.; Date, K.; Aoyama, T. Tetrahedron 2009, 65, 8708.
(b) Feldman, K. S.; Wrobleski, M. L. Org. Lett. 2000, 2, 2603. (c) Feldman,
K. S.; Wrobleski, M. L. J. Org. Chem. 2000, 65, 8659. (d) Ito, Y.; Aoyama,
T.; Shioiri, T. Synlett 1997, 1163. (e) Sueda, T.; Nagaoka, T.; Goto, S.;
Ochiai, M. J. Am. Chem. Soc. 1996, 118, 10141. (f) Kim, S.; Cho, C. M.
Tetrahedron Lett. 1995, 36, 4845.
In conclusion, we have developed a new cyclopropenation
reaction involving CR-Si bond insertion of alkylidene carbenes
derived from R-silyl ketones. This unprecedented alkylidene carbene
JA101998W
9
J. AM. CHEM. SOC. VOL. 132, NO. 19, 2010 6641