Journal of the American Chemical Society
ARTICLE
(6) (a) Suzuki, Y.; Okamoto, T.; Wakamiya, A.; Yamaguchi, S. Org.
Lett. 2008, 10, 3393. (b) Shefer, N.; Harel, T.; Rozen, S. J. Org. Chem.
2009, 74, 6993. (c) Miguel, L. S.; Matzger, A. J. J. Org. Chem. 2008, 73,
7882.
(7) (a) Elbing, M.; Bazan, G. C. Angew. Chem., Int. Ed. 2008, 47, 834.
(b) Mercier, L. G.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2009,
48, 6108. (c) Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Parvez, M.
Angew. Chem., Int. Ed. 2007, 46, 4940. (d) Jaska, C. A.; Piers, W. E.;
McDonald, R.; Parvez, M. J. Org. Chem. 2007, 72, 5234. (e) Agou, T.;
Kobayashi, J.; Kawashima, T. Chem.;Eur. J. 2007, 13, 125. (f) Agou, T.;
Kobayashi, J.; Kawashima, T. Chem. Commun. 2007, 3204. (g) Agou, T.;
Kobayashi, J.; Kawashima, T. Org. Lett. 2006, 8, 2241.
(8) For silicon, see: (a) Yamaguchi, S.; Xu, C.; Tamao, K. J. Am. Chem.
Soc. 2003, 125, 13662. (b) Xu, C.; Wakamiya, A.; Yamaguchi, S.
J. Am. Chem. Soc. 2005, 127, 1638. (c) Mouri, K.; Wakamiya, A.; Yamada,
H.; Kajiwara, T.; Yamaguchi, S. Org. Lett. 2007, 9, 93. (d) Biaso, F.;
Geoffroy, M.; Canadell, E.; Auban-Senzier, P.; Levillain, E.; Fourmiguꢀe, M.;
Avarvari, N. Chem.;Eur. J. 2007, 13, 5394. (e) Shimizu, M.; Tatsumi, H.;
Mochida, K.; Oda, K.; Hiyama, T. Chem.;Asian J. 2008, 3, 1238.
(9) For phosphorus, see: (a) Matano, Y.; Imahori, H. Org. Biomol.
Chem. 2009, 7, 1258; (b) Baumgartner, T; Rꢀeau, R. Chem. Rev. 2006,
106, 468; Correction: Chem. Rev. 2007, 108, 303. (c) Crassous, J.; Rꢀeau,
R. Dalton Trans. 2008, 6865. (d) Washington, M. P.; Gudimetla, V. B.;
Laughlin, F. L.; Deligonul, N.; He, S.; Payton, J. L.; Simpson, M. C.;
Protasiewicz, J. D. J. Am. Chem. Soc. 2010, 132, 4566. (e) Dillon, K. B.;
Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy; Wiley: New York,
1998. (f) Mathey, F. Phosphorus-Carbon Heterocyclic Chemistry: The Rise
of a New Domain; Pergamon Press: Amsterdam, 2001.
(10) (a) Baumgartner, T.; Neumann, T.; Wirges, B. Angew. Chem.,
Int. Ed. 2004, 43, 6197. (b) Baumgartner, T.; Bergmans, W.; Kꢀarpꢀati, T.;
Neumann, T.; Nieger, M.; Nyulꢀaszi, L. Chem.;Eur. J. 2005, 11, 4687.
(c) Durben, S.; Dienes, Y.; Baumgartner, T. Org. Lett. 2006, 8, 5893. (d)
Dienes, Y.; Durben, S.; Kꢀarpꢀati, T.; Neumann, T.; Englert, U.; Nyulꢀaszi,
L.; Baumgartner, T. Chem.;Eur. J. 2007, 13, 7487. (e) Hobbs, M. G.;
Baumgartner, T. Eur. J. Inorg. Chem. 2007, 3611.
M. Electronic Processes In Organic Crystals; Clarendon Press: Oxford,
1982. (d) Kenkre, V. M.; Peineker, P. Exciton Dynamics in Molecular
Crystals and Aggregates; Springer: Berlin, 1982. (e) Muccini, M.; Murgia,
M.; Biscarini, F.; Taliani, C. Adv. Mater. 2001, 13, 355. (f) Duan, L.; Hou,
L. D.; Lee, T.-W.; Qiao, J.; Zhang, D. Q.; Dong, G. F.; Wang, L. D.; Qiu,
Y. J. Mater. Chem. 2010, 20, 6392.
(20) (a) Anderson, J. D.; et al. J. Am. Chem. Soc. 1998, 120, 9646. (b)
Hreha, R. D.; George, C. P.; Haldi, A.; Domercq, B.; Malagoli, M.;
Barlow, S.; Brꢀedas, J.-L.; Kippelen, B.; Marder, S. R. Adv. Funct. Mater.
2003, 13, 967.
(21) Cahen, D.; Kahn, A. Adv. Mater. 2003, 15, 271.
(22) Frisch, M. J.; et al. Gaussian 03, revision E.01; Gaussian Inc.:
Wallingford, CT, 2007 (see Supporting Information for full reference)
(23) Only the cationic part has been used for these compounds, as
the materials’ electronic properties are usually governed by the cation.
To account for this truncation, a polarizable continuum model (PCM)
with solvent = dichloromethane was used for the calculations.
(24) (a) Letizia, J. A.; Cronin, S.; Ortiz, R. P.; Facchetti, A.; Ratner,
M. A.; Marks, T. J. Chem.;Eur. J. 2009, 16, 1911. (b) Chen, M. C.;
Chiang, Y. J.; Kim, C.; Guo, Y. J.; Chen, S. Y.; Liang, Y. J.; Hu, T. S.; Lee,
G. H.; Facchetti, A.; Marks, T. J. Chem. Commun 2009, 1846.
(25) Gordon, T. J.; Szabo, L. D.; Linder, T.; Berlinguette, C. P.;
Baumgartner, T. C. R. Chimie 2010, 13, 971.
(26) Romero-Nieto, C.; Merino, S.; Rodríguez-Lꢀopez, J.; Baumgart-
ner, T. Chem.;Eur. J. 2009, 15, 4135.
(27) (a) Zhang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41,
1596. (b) Li, R. P.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Acc. Chem. Res. 2008,
41, 529. (c) Zhao, Y. S.; Fu, H. B.; Peng, A. D; Ma, Y.; Liao, Q.; Yao, J. N.
Acc. Chem. Res. 2010, 43, 509. (d) Kato, T. Angew. Chem., Int. Ed. 2010,
49, 2.
(28) (a) Olive, A. G. L.; Guerzo, A. D.; Belin, C.; Reichwagen, J.;
Desvergne, J.-P. Res. Chem. Intermed. 2008, 34, 137. (b) Desvergne, J.-P.;
Olive, A. G. L.; Sangeetha, N. M.; Reichwagen, J.; Hopf, H.; Guerzo,
A. D. Pure Appl. Chem. 2006, 78, 2333. (c) Desvergne, J.-P.; Guerzo,
A. D.; Bouas-Laurent, H.; Belin, C.; Reichwagen, J.; Hopf, H. Pure Appl.
Chem. 2006, 78, 707. (d) Guerzo, A. D.; Olive, A. G. L.; Reichwagen, J.;
Hopf, H.; Desvergne, J.-P. J. Am. Chem. Soc. 2005, 127, 17984. (e)
Reichwagen, J.; Hopf, H.; Guerzo, A. D.; Belin, C.; Bauas-Laurent, H.;
Desvergne, J.-P. Org. Lett. 2005, 7, 971.
(11) (a) Fukazawa, A.; Hara, M.; Son, T.; Okamoto, E.-C.; Xu, C.;
Tamao, K.; Yamaguchi, S. Org. Lett. 2008, 10, 913. (b) Fukazawa, A.;
Ichihashi, Y.; Kosaka, Y.; Yamaguchi, S. Chem.;Asian J. 2009, 4, 1729.
(c) Saito, A.; Miyajima, T.; Nakashima, M.; Fukushima, T.; Kaji, H.;
Matano, Y.; Imahori, H. Chem.;Eur. J. 2009, 15, 10000. (d) Miyajima,
T.; Matano, Y.; Imahori, H. Eur. J. Org. Chem. 2008, 255. (e) Matano, Y.;
Miyajima, T.; Fukushima, T.; Kaji, H.; Kimura, Y.; Imahori, H. Chem.;
Eur. J. 2008, 14, 8102. (f) Dienes, Y.; Eggenstein, M.; Kꢀarpꢀati, T.;
Sutherland, T. C.; Nyulꢀaszi, L.; Baumgartner, T. Chem.;Eur. J. 2008,
14, 9878. (g) Ren, Y.; Dienes, Y.; Hettel, S.; Parvez, M.; Hoge, B.;
Baumgartner, T. Organometallics 2009, 28, 734.
(12) (a) Fukazawa, A.; Yamada, H.; Sasaki, Y.; Akiyama, S.;
Yamaguchi, S. Chem.;Asian J. 2010, 5, 466. (b) Fukazawa, A.; Yamada,
H.; Yamaguchi, S. Angew. Chem., Int. Ed. 2008, 47, 5582.
(13) (a) Ren, Y.; Linder, T.; Baumgartner, T. Can. J. Chem. 2009, 87,
1222. (b) Ren, Y.; Baumgartner, T. Chem.;Asian J. 2010, 5, 1918.
(14) (a) Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.;
Kuwabara, H.; Yui, T. J. Am. Chem. Soc. 2007, 129, 15732. (b) Izawa, T.;
Miyazaki, E.; Takimiya, K. Adv. Mater. 2008, 20, 3388. (c) Sundar, V. C.;
Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.;
Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644. (d) da Silva
Filho, D. A.; Kim, E.-G.; Brꢀedas, J.-L. Adv. Mater. 2005, 17, 1072.
(15) Aaron, J.-J.; Mechbal, Z.; Adenier, A.; Parkanyi, C.; Kozmik, V.;
Svoboda, J. J. Fluoresc. 2002, 12, 231.
(16) (a) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd
ed.; Springer: New York, 2006. (b) Valeur, B. Molecular Fluorescence,
Principles and Applications; Wiley-VCH: Weinheim, 2002.
(17) Nakayama, J.; Sugihara, Y. Top. Curr. Chem. 1999, 205, 132.
(18) Yamaguchi, Y.; Matsubara, Y.; Ochi, T.; Wakamiya, T.; Yoshida,
Z. J. Am. Chem. Soc. 2008, 130, 13867.
(19) (a) Cicoira, F.; Santato, C.; Dinelli, F.; Murgia, M.; Loi, M. A.;
Biscarini, F.; Zamboni, R.; Heremans, P.; Muccini, M. Adv. Funct. Mater.
2005, 15, 375. (b) Foerster, T. Ann. Phys. (Leipzig) 1984, 2, 55. (c) Pope,
1340
dx.doi.org/10.1021/ja108081b |J. Am. Chem. Soc. 2011, 133, 1328–1340