Table 3. Formation of Vinyl Carbinols
Scheme 5
carbinol 2 through the well-known Mislow-Braverman-
Evans reaction.9 Separation of the complex mixture of
sulfoxides is neither necessary nor desirable since, under
the reaction conditions, both vinyl and allyl sulfoxides 16
and 17 are in equilibrium via their common enol 18 but
only the latter can undergo the sigmatropic rearrangement
followed by the irreversible reduction of the intermediate
sulfenate by the phosphine.10 The enolate corresponding
to 18 is stabilized by two electron-withdrawing groups, the
ketone and the sulfoxide, and phosphine is sufficiently
basic to mediate its formation.
Examples of the vinyl carbinols obtained by this route
are collected in Table 3. The unoptimized overall yields
from the corresponding sulfides are synthetically useful. It
is worth emphasizing that some of these compounds would
be difficult to access by more conventional approaches.
In summary, we have devised a convergent, flexible
route to R-keto vinyl carbinols. These densely functiona-
lized structures can serve as starting points for numerous
subsequent transformations. More generally, the combi-
nation of the radical addition of a xanthate to ethyl vinyl
sulfide and thermolysis represents a simple access to
variously substituted vinyl sulfides, a class of compounds
with a very rich yet surprisingly underused chemistry.11
Hopefully, the present work will contribute to reviving
interest in this area by providing a practical and versatile
synthetic protocol.
(9) (a) Evans, D. A.; Andrews, G. C. Acc. Chem. Res. 1974, 7, 147. (b)
Bickart, P.; Carson, F. W.; Jacobus, J.; Miller, E. G.; Mislow, K. J. Am.
Chem. Soc. 1968, 90, 4869. (c) Braverman, S.; Stabinsky, Y. J. Chem.
€
Soc., Chem. Commun 1967, 270. (d) For a review, see: Bruckner, R.
In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, UK, 1991; Vol. 6, p 873.
(10) (a) Miura, M.; Toriyama, M.; Kawakubo, T.; Yasukawa, K.;
ꢀ
Takido, T.; Motohashi, S. Org. Lett. 2010, 12, 3882. (b) Giardina, A.;
Marcantoni, E.; Mecozzi, T.; Petrini, M. Eur. J. Org. Chem. 2001, 4, 713.
(c) Nokami, J.; Kataoka, K.; Shiraishi, K.; Osafune, M.; Hussain, I.;
Sumida, S. J. Org. Chem. 2001, 66, 1228. (d) Nokami, J.; Osafune, M.;
Shiraishi, K.; Sumida, S.; Imai, N. J. Chem. Soc., Perkin Trans. 1 1997,
2947. (e) Nokami, J.; Taniguchi, T.; Ogawa, Y. Chem. Lett. 1994, 43. (f)
Boivin, J.; Chauvet, C.; Zard, S. Z. Tetrahedron Lett. 1992, 33, 4913. (g)
Nokami, J.; Nishimura, A.; Sunami, M.; Wakabayashi, S. Tetrahedron
Lett. 1987, 28, 649.
(11) (a) Yang, J.; Sabarre, A.; Fraser, L. R.; Patrick, B. O.; Love, J. A.
J. Org. Chem. 2009, 74, 182. (b) Wang, Z.-L.; Tang, R.-I.; Luo, P.-S.;
Deng, C.-L.; Zhong, P.; Li, J.-H. Tetrahedron 2008, 64, 10670. (c)
Sasmal, P. K.; Maier, M. E. Org. Lett. 2002, 4, 1271. (d) Ogawa, A.;
Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108. (e)
Paquette, L. A.; Sun, L.-Q.; Watson, T. J. N.; Friedrich, D.; Freeman,
B. T. J. Org. Chem. 1997, 62, 8155. (f) Bratz, M.; Bullock, W. H.;
Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958. (g)
Blumenkopf, T. A.; Bratz, M.; Castafieda, A.; Look, G. C.; Overman,
L. E.; Rodriguez, D.; Thompson, A. S. J. Am. Chem. Soc. 1990, 112,
4386. (h) Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983, 105, 5075.
Acknowledgment. We dedicate this paper with respect
to Professor Koichi Narasaka (Nanyang Technological
University, Singapore). M.-G.B. thanks Ecole Polytechni-
que for a scholarship.
Supporting Information Available. Experimental pro-
cedures, full spectroscopic data, and copies of 1H and 13
C
NMR spectra for all new compounds. This material is
acs.org.
Org. Lett., Vol. 13, No. 4, 2011
779