ChemComm
Please do not adjust margins
Page 4 of 4
COMMUNICATION
Journal Name
Jungbauer, S. M. Walter, S. Schindler,DL.ORI:o1u0.t1,0F3.9/KCn8iCepC0a5n3d09SJ.
M. Huber, Chem. Commun., 2014, 50, 6281; (e) W. He, Y.-C.
Ge and C-H. Tan, Org. Lett., 2014, 16, 3244; (f) Y. Takeda, D.
Hisakuni, C.-H. Lin and S. Minakata, Org. Lett., 2015, 17, 318;
(g) M. Saito, N. Tsuji, Y. Kobayashi and Y. Takemoto, Org.
Lett., 2015, 17, 3000; (h) S. H. Jungbauer and S. M. Huber, J.
Am. Chem. Soc., 2015, 137, 12110; (i) A. Matsuzawa, S.
Takeuchi and K. Sugita, Chem. Asian J. 2016, 11, 2863. (j) I.
Kazi, S. Guha and G. Sekar, Org. Lett., 2017, 19, 1244; (k) M.
Saito, Y. Kobayashi, S. Tsuzuki and Y. Takemoto, Angew.
Chem., Int. Ed., 2017, 56, 765; (l) J.-P. Gliese, S. H. Jungbauer
and S. M. Huber Chem. Commun., 2017, 53, 12052; (m) Y.-C.
Chan and Y.-Y. Yeung, Angew. Chem., Int. Ed., 2018, 57,
3483; (n) F. Heinen, E. Engelage, A. Dreger, R. Weiss and S. M.
Huber, Angew. Chem., Int. Ed., 2018, 57, 3830; (o) Y.
Kobayashi, Y. Nakatsuji, S. Li, S. Tsuzuki and Y. Takemoto,
Angew. Chem., Int. Ed., 2018, 57, 3646. (p) T. Arai, T. Suzuki,
T. Inoue and S. Kuwano, Synlett, 2017, 28, 122; (q) S. Kuwano,
T. Suzuki, Y. Hosaka and T. Arai, Chem. Commun., 2018, 54,
3847.
Selected examples, see: (a) K. Maruoka, N. Murase, R.
Bureau, T. Ooi, H. Yamamoto, Tetrahedron, 1994, 50, 3663;
(b) K. Ishihara, S. Nakagawa and A. Sakakura, J. Am. Chem.
Soc., 2005, 127, 4168; (c) A. Ochida, H. Ito and M. Sawamura,
J. Am. Chem. Soc., 2006, 128, 16486; (d) T. Fujihara, K. Semba,
J. Terao and Y. Tsuji, Angew. Chem., Int. Ed., 2010, 49, 1472;
(e) T. Saget, S. J. Lemouzy and Nicolai Cramer, Angew. Chem.,
Int. Ed., 2012, 51, 2238; (f) C. Cheng and J. F. Hartwig, Science,
2014, 343, 853. (g) Y. Saito, Y. Segawa and K. Itami, J. Am.
Chem. Soc., 2015, 137, 5193; (h) J.-H. Zhou, B. Jiang, F.-F.
Meng, Y.- H. Xu and T.-P. Loh, Org. Lett., 2015, 17, 4432; (i) T.
Hashimoto, K. Takino, K. Hato and K. Maruoka, Angew.
Chem., Int. Ed., 2016, 55, 8081; (j) S. Okumura, S. Tang, T.
Saito, K. Semba, S. Sakaki and Y. Nakao, J. Am. Chem. Soc.,
2016, 138, 14699.
significantly impacted their catalytic activities. The origin of
these steric effects was analyzed using DFT calculations and 13
C
NMR data. Introducing bulky substituents at the triazolium
rings enhanced the electron withdrawing ability, leading to the
high catalytic efficiency of 3c. Additional mechanistic study and
expansion of substrate scope to less Lewis basic substrates
such as aldehydes and ketones are currently underway in our
laboratory.
This research was financially supported by a Grant-in-Aid
for Young Scientists (B) (JP 80781369) and The Institute of
Science and Engineering, Chuo University.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) O. Hassel, Science, 1970, 170, 497; (b) G. R. Desiraju, P. S.
Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P.
Politzer, G. Resnati and K. Rissanen, Pure Appl. Chem., 2013,
85, 1711.
Selected examples, see (a) S. Tsuzuki, A. Wakisaka, T. Ono
and T. Sonoda, Chem. − Eur. J., 2012, 18, 900; (b) G. Valerio,
G. Raos, S. V. Meille, P. Metrangolo and G. Resnati, J. Phys.
Chem. A, 2000, 104, 1617; (c) P. Politzer, J. S. Murray and T.
Clark, Phys. Chem. Chem. Phys., 2010, 12, 7748; (d) Y. Lu, H.
Li, X. Zhu, W. Zhu and H. Liu, J. Phys. Chem. A, 2011, 115,
4467; (e) S. M. Huber, J. D. Scanlon, E. Jimenez-Izal, J. M.
Ugalde and I. Infante, Phys. Chem. Chem. Phys., 2013, 15,
10350.
Selected reviews, see (a) T. M. Beale, M. G. Chudzinski, M. G.
Sarwar and M. S. Taylor, Chem. Soc. Rev., 2013, 42, 1667; (b)
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G.
Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478; (c) L.
C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R.
Mullaney and P. D. Beer, Chem. Rev., 2015, 115, 7118; (d) B.
Li, S.-Q. Zang, L.-Y. Wang and T. C. Mak, Coord. Chem. Rev.,
2016, 308, 1; (e) P. Molina, F. Zapata and A. Caballero, Chem.
Rev., 2017, 117, 9907.
7
2
3
8
9
(a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004; (b) F. Himo, T. Lovell, R. Hilgraf, V. V.
Rostovtsev, L. Noodleman, K. B. Sharpless and V. V. Fokin, J.
Am. Chem. Soc., 2005, 127, 210.
(a) H. Hiroki, K. Ogata and S.-i. Fukuzawa, Synlett, 2013, 24,
843. (b) R. Haraguchi, S. Hoshino, T. Yamazaki and S.-i.
Fukuzawa, Chem. Commun., 2018, 54, 2110.
4
5
Selected reviews, see: (a) K. Rissanen, CrystEngComm, 2008,
10, 1107; (b) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati
and G. Terraneo, Angew. Chem., Int. Ed., 2008, 47, 6114; (c)
G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera
and G. Terraneo, Chem. Soc. Rev., 2010, 39, 3772; (d) A.
Mukherjee, S. Tothadi and G. R. Desiraju, Acc. Chem. Res.,
2014, 47, 2514.
(a) S. M. Walter, F. Kniep, E. Herdtweck and S. M. Huber,
Angew. Chem., Int. Ed., 2011, 50, 7187; (b) F. Kniep, S. M.
Walter, E. Herdtweck and S. M. Huber, Chem. −Eur. J., 2012,
18, 1306; (c) F. Kniep, L. Rout, S. M. Walter, H. K. V. Bensch, S.
H. Jungbauer, E. Herdtweck and S. M. Huber, Chem.
Commun., 2012, 48, 9299; (d) N. Tsuji, Y. Kobayashi and Y.
Takemoto, Chem. Commun., 2014, 50, 13691; (e) R. Castelli,
S. Schindler, S. M. Walter, F. Kniep, H. S. Overkleeft, G. A.
Van der Marel, S. M. Huber and J. D. C. Codée, Chem.−Asian J.
2014, 9, 2095; (f) X. Yi, L. Jiao and C. Xi, Org. Biomol. Chem.,
2016, 14, 9912; (g) X. Sun, W. Wang, Y. Li, J. Ma and S. Yu,
Org. Lett., 2016, 18, 4638. (h) A. Dreger, E. Engelage, B.
Mallick, P. D. Beer and S. M. Huber, Chem. Commun., 2018,
Advanced Article
10 (a) K. Takasu, N. Shindoh, H. Tokuyama and M. Ihara,
Tetrahedron, 2006, 62, 11900; (b) M. Rombola and V. H.
Rawal Org. Lett., 2018, 20, 514.
11 (a) L. Wu, B. Niu, W. Li and F. Yan, Bull. Korean Chem. Soc.,
2009, 30, 2777; (b) K. J. Borah, M. Phukan and R. Borah,
Synth. Commun., 2010, 40, 2830; (c) B. K. Banik, M.
Fernandez and C. Alvarez, Tetrahedron Lett., 2005, 46, 2479;
(d) C. Lin, J. Hsu, M. N. V. Sastry, H. Fang, Z. Tu, J.-T. Liu and Y.
Ching-Fa, Tetrahedron 2005, 61, 11751; (e) M. Breugst, E.
Detmar and D. von der Heiden, ACS Catal., 2016, 6, 3203.
12 In the previous report on the halogen-bonding catalyzed aza-
Diels-Alder reaction by Takeda and Minakata et al. (Ref. 6f),
they confirmed that halogen-bonding interaction occurred
between halogen-bonding-donors (iodobenzimidazolium
salts) and substrates (imines) by NMR titration experiments.
13 Our DFT calculation study revealed that the stabilization
energy of halogen bonding between 3c and 5a is
−5.0
kcal/mol. Moreover, the bond length of C=N in imine moiety
of halogen-boding complex 3c-5a is longer that of the
original imine 5a (1.273 Å vs 1.268 Å), indicating that
halogen-bonding-donors work as Lewis acid catalysts to
electrophilically activate imines in the present reaction.
Please see the supporting information for details.
6
(a) A. Bruckmann, M. A. Pena and P. C. Bolm, Synlett, 2008,
900; (b) O. Coulembier, F. Meyer and P. Dubois, Polym.
Chem., 2010, 1, 434; (c) F. Kniep, S. H. Jungbauer, Q. Zhang, S.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins