430
C.-K. Ryu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 427–430
development of antifungal agents. Moreover, the results should
encourage the synthesis of 1H-carbazole-1,4(9H)-dione analogs
for improving antifungal properties.
HO
HO
O
O
O
O
R1
+
3
H2N
R2
9
N
N
Acknowledgment
R
R
1
-
Ce3+
Ce3+
This study was supported by a Grant of the Korea Healthcare
Technology R&D Project, Ministry for Health, Welfare and Family
Affairs, Republic of Korea (A08-0414-AA1723-08N1-00010A).
10
9
9'
HO
O
O
H
N
R1
R2
References and notes
1. Middleton, R. W.; Parrick, J. In The Chemistry of the Quinonoid Compounds; Patak,
S., Rappoport, Z., Eds.; John Wiley & Sons: London, 1988; p 1019.
2. Roberts, H.; Choo, W. M.; Smith, S. C.; Mrzuki, S.; Linnane, A. W.; Porter, T. H.;
Folkers, K. Arch. Biochem. Biophys. 1978, 191, 306.
3. Di Rigo, J.-P.; Bruel, C.; Graham, L. A.; Sonimski, P.; Trumpower, B. L. J. Biol.
Chem. 1996, 271, 15341.
N
R
3
In similar manner, the 3-arylthio products 4 and 6 were formed by an addition of
arylthiols to 90. Most of these reactions went as expected. Actually, the additions
in compounds 9 gave mainly 3-substituted products 3, 4, and 6 along with traces
of 2-substituted compounds as by-product. The products 3, 4, and 6 were
separated by silicagel columnchromatography. Purity ofproducts 3, 4, and 6 was
determined both by to TLC and GC. The results showed that a single compound
was contained in each product. TLC was performed on precoated silica gel (60G
254, Merck) using CHCl3 for solvent. The compounds were detected under UV
light (254 nm). The purity of products was also verified by GC (Hewlett Packard
5890A, HP-5 capillary column at 260 °C, N2, 17 mL/mim as carrier gas, FID).
16. Experimental: All melting points were measured with Büchi melting point B-
545 and were uncorrected. 1H NMR spectra or 13C NMR spectra were recorded
on Varian Unity INOVA 400 MHz FT-NMR spectrometer with TMS. Mass
spectra were taken with Jeol JMS AX505 WA. 9-Ethyl-6-hydroxy-3-(4-methoxy-
phenylamino)-9H-carbazole-1,4-dione (3a): mp 176–178 °C; 1H NMR (DMSO-
d6) d 1.32 (t, J = 7.2, 3H, CH2CH3), 3.78 (s, 3H, OCH3), 4.63 (q, J = 7.2, 2H,
CH2CH3), 6.99 (m, 1H), 7.02 (d, J = 9.2, 2H), 7.33 (d, J = 9.2, 2H), 7.45 (d, 1H),
7.62 (d, 1H), 9.13 (s, 1H), 9.58 (s, 1H); 13C NMR (DMSO-d6) d 178.6, 173.1,
157.3, 154.1, 151.6, 140.5, 138.5, 135.7, 132.2, 124.8, 118.5, 114.2, 113.1, 110.3,
107.9, 103.3, 56.9, 43.9, 15.4; MS (m/z) 362 (M+). 9-Ethyl-6-hydroxy-3-(4-
methoxy-phenylthio)-9H-carbazole-1,4-dione (4a): mp 273–274 °C; 1H NMR
(CDCl3) d 1.42 (t, J = 7.2, 3H, CH2CH3), 3.87 (s, 3H, OCH3), 4.57 (q, J = 7.2, 2H,
CH2CH3), 5.54 (s, 1H), 5.65 (s, 1H), 7.01 (m, 2H), 7.04 (m, 1H), 7.33 (m, 1H), 7.45
(d, 2H), 7.72 (d, 1H); 13C NMR (CDCl3) d 176.5, 173.1, 157.6, 157.1, 152.9, 139.8,
137.7, 134.4, 131.7, 127.9, 124.2, 123.3, 116.2, 114.9, 109.2, 104.1, 56.1, 43.8,
16.0; MS (m/z) 379 (M+). 9-Ethyl-6-hydroxy-2,3-bis-(4-methoxy-phenylthio)-9H-
carbazole-1,4-dione (5a): mp 166–168 °C; 1H NMR (CDCl3) d 1.45 (t, J = 7.2, 3H,
CH2CH3), 3.71 (s, 6H, OCH3), 4.72 (q, J = 7.2, 2H, CH2CH3), 6.65 (m, 4H), 6.98 (m,
4H), 7.09 (m, 1H), 7.25 (d, J = 8.0, 1H), 7.33 (d, J = 8.0, 1H), 7.82 (s, 1H); MS (m/z)
517 (M+). 9-Ethyl-3-ethythio-6-hydroxy-9H-carbazole-1,4-dione (6): mp 275–
277 °C; 1H NMR (DMSO-d6) d 1.43 (t, J = 7.4, 3H, CH2CH3), 1.42 (t, J = 7.1, 3H,
CH2CH3), 2.88 (q, J = 7.4, 2H, CH2CH3), 4.61 (q, J = 7.1, 2H, CH2CH3), 6.22 (s, 1H),
6.98 (t, 1H), 7.41 (d, 1H), 7.53 (d, 1H), 9.42 (s, 1H); MS (m/z) 301 (M+).
17. Mcginnis, M. R.; Rindali, M. G. In Antibiotics in Laboratory Medicine; Lorian, V.,
Ed., 4th ed.; Williams and Wilkins: Baltimore, 1996; pp 176–211.
4. Musser, S. M.; Stowell, M. H. B.; Lee, H. K.; Rumbley, J. N.; Chan, S. I.
Biochemistry 1997, 36, 894.
5. Ryu, C.-K.; Choi, K. U.; Shim, J.-Y.; You, H.-J.; Choi, I. H.; Chae, M. J. Bioorg. Med.
Chem. 2003, 11, 4003.
6. Ryu, C.-K.; Lee, R.-Y.; Kim, N. Y.; Kim, Y. H.; Song, A. L. Bioorg. Med. Chem. Lett.
2009, 19, 5924.
7. Ryu, C.-K.; Song, E. H.; Shim, J.-Y.; You, H.-J.; Choi, K. U.; Choi, I. H.; Lee, E. Y.;
Chae, M. J. Bioorg. Med. Chem. Lett. 2003, 13, 17.
8. Ryu, C.-K.; Lee, S.-K.; Han, J.-Y.; Jung, O.-J.; Lee, J. Y.; Jeong, S. H. Bioorg. Med.
Chem. Lett. 2005, 15, 2617.
9. Shaikh, I. A.; Johnson, F.; Grollman, A. P. J. Med. Chem. 1986, 29, 1333.
10. (a) Ryu, C.-K.; Park, R.-E.; Ma, M.-Y.; Nho, J.-H. Bioorg. Med. Chem. Lett. 2007, 17,
2577; (b) Ryu, C.-K.; Choi, K. U.; Shim, J.-Y.; Chae, M. J.; Choi, I. H.; Han, J.-Y.;
Jung, O.-J.; Lee, J. Y.; Jeong, S. H. Eur. J. Med. Chem. 2005, 40, 438.
11. (a) Tandon, V. K.; Maurya, H. K.; Tripathi, A.; ShivaKesva, G. B.; Shukla, P. K.;
Srivastava, A.; Panda, D. Eur. J. Med. Chem. 2009, 44, 1086; (b) Tandon, V. K.; Chhor,
R. B.; Singh, R. V.; Rai, S.; Yadav, D. B. Bioorg. Med. Chem. Lett. 2004, 14, 1079.
12. Bouaziz, Z.; Gherardi, A.; Regnier, F.; Sarciron, M.-E.; Bertheau, X.; Fenet, B.;
Walchshofer, N.; Fillion, H. Eur. J. Org. Chem. 2002, 1834.
13. Paraskevas, S. M.; Konstantinidis, D.; Vassilara, G. Synthesis 1998, 897.
14. Pratt, Y. T. J. Org. Chem. 1962, 27, 3905; Yoshida, K.; Ishiguro, M.; Honda, H.;
Yamamoto, M.; Kubo, Y. Bull. Chem. Soc. Jpn. 1988, 61, 4335; Ryu, C.-K.; Shin, K.
H.; Seo, J. H.; Kim, H. J. Eur. J. Med. Chem. 2002, 37, 77.
15. 3-Substituted-1H-carbazole-1,4(9H)-diones 3, 4, and
6
9
were formed by
with 1 equiv of
regioselective nucleophilic addition of compounds
appropriate arylamines 10 or thiols in the presence of CeCl3. As results of
catalytic action of Ce3+ ions, the addition in compounds 9 gave mainly 3-
substituted products 3, 4, and 6. The regioselectivity should be originated from
the selective increment of the electrophilicity of 3-position in compounds 9 by
the formation of Ce(III) chelate between carbonyl oxygen at 1-position and
nitrogen at 9-position. The catalysis by Ce3+ ions is understood from the
intermediate 90. The 3-arylamino products 3 were formed by a Michael-type
addition of arylamines 10 to 90. These additions were similar to the regioselective
reaction of arylamines 10 on 5,8-quinolinedione or 5,8-quinazolinedione the
presence of Ce(III).14