R. Schrock and C. Czekelius, Adv. Synth. Catal., 2007, 349(1–2), 55;
(f) R. H. Grubbs, Adv. Synth. Catal., 2007, 349(1–2), 23; (g) R. H.
Grubbs, Adv. Synth. Catal., 2007, 349(1–2), 34; (h) D. K. Mohapatra,
D. K. Ramesh, M. A. Giardello, M. S. Chorghade, M. K. Gurjar
and R. H. Grubbs, Tetrahedron Lett., 2007, 48, 2621; (i) J. M. Berlin,
K. Campbell, T. Ritter, T. W. Funk, A. Chlenov and R. H. Grubbs,
Org. Lett., 2007, 9, 3175; (j) F. Glorius, in N-Heterocyclic Carbene in
Transition Metal Catalysis, Springer: New York, 2006; (k) P. S. Nolan,
in N-Heterocyclic Carbene in Synthesis, Wiley-VCH Weinheim 2006;
(l) E. M. Prokopchuck and R. J. Puddhephatt, Organometallics, 2003,
22, 563; (m) W. A. Hermann, Angew. Chem., Int. Ed., 2002, 41, 1290.
3 (a) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18; (b) T.
Weskamp, V. P. Bohm and W. A. Hermann, J. Organomet. Chem., 2000,
600, 12; (c) L. Jafapour and S. P. Nolan, Adv. Organomet. Chem., 2000,
46, 181.
4 (a) D. S. McGuinness, W. Mueller, P. Wasserscheid, K. J. Cavell, B.
W. Skelton and A. H. White, Organometallics, 2002, 21, 175; (b) D. J.
Nielsen, K. J. Cavell, B. W. Skelton and A. H. White, Inorg. Chim. Acta,
2002, 327, 116; (c) R. E. Doutwhite, M. Green, P. J. Silkock and P. T.
Gomes, J. Chem. Soc., Dalton Trans., 2002, 1386; (d) W. A. Hermann,
L. J. Goossen and M. Spiegler, Organometallics, 1998, 17, 2162.
5 (a) F. Visentin and A. Togni, Organometallics, 2007, 26, 3746; (b) A. W.
Waltman and R. H. Grubbs, Organometallics, 2004, 23, 3105; (c) H.
Seo, H. Park, B. Y. Kim, J. H. Lee and Y. K. Chung, Organometallics,
2003, 22, 618; (d) M. Freseth, A. Dhindsa, H. Røise and M. Tilset,
J. Chem. Soc. Dalton Trans, 2003, 4516; (e) L. G. Bonnet, R. E.
Doutwhite and B. M. Kariuki, Organometallics, 2003, 22, 4187; (f) A.
A. D. Tulloch, S. Winston, A. A. Danoupolos, G. Eastham and M. B.
Hursthouse, J. Chem. Soc. Dalton Trans, 2003, 699; (g) A. A. D. Tulloch,
A. A. Danoupolos, S. Khleinhenz, M. E. Light, M. B. Hursthouse and
G. Eastham, Organometallics, 2000, 20, 2027; (h) A. A. D. Tulloch, A.
A. Danoupolos, S. Winston, S. Khleinhenz and G. Eastham, J. Chem.
Soc., Dalton Trans., 2000, 4499; (i) F. E. Hahn and M. C. Jahnke,
Angew. Chem., Int. Ed., 2008, 47, 3122.
6 (a) S. D´ıez-Gonza´lez and S. P. Nolan, Coord. Chem. Rev., 2007, 251,
874; (b) M. Heckenroth, A. Neels, H. Stoekli-Evans and M. Albrecht,
Inorg. Chim. Acta, 2006, 359, 1929.
7 S. Filipuzzi, P. S. Pregosin, A. Albinati and S. Rizzato, Organometallics,
2008, 27, 437.
8 (a) L. Canovese, F. Visentin, C. Santo, G. Chessa and V. Bertolasi,
Organometallics, 2010, 29, 3027; (b) B. Crociani, S. Antonaroli, L.
Canovese, F. Visentin and P. Uguagliati, Inorg. Chim. Acta, 2001, 315,
172; (c) B. Crociani, S. Antonaroli, G. Bandoli, L. Canovese, F. Visentin
and P. Uguagliati, Organometallics, 1999, 18, 1137; (d) L. Canovese,
F. Visentin, P. Uguagliati, G. Chessa, V. Lucchini and G. Bandoli,
Inorg. Chim. Acta, 1998, 275–276, 385; (e) L. Canovese, F. Visentin, P.
Uguagliati, G. Chessa and A. Pesce, J. Organomet. Chem., 1998, 566,
61; (f) L. Canovese, F. Visentin, P. Uguagliati, G. Chessa, B. Crociani
and F. Di Bianca, Inorg. Chim. Acta, 1995, 235, 45; (g) L. Canovese, F.
Visentin, P. Uguagliati, F. Di Bianca, S. Antonaroli and B. Crociani, J.
Chem. Soc., Dalton Trans., 1994, 3113.
s-donor NHC (vide infra). Such an experimental finding is probably
due to an extensive shielding exerted by the large phenyl substituents
of the carbene moiety on its cis allyl terminus.
3
17 For a recent study on the dynamics of h -allyl complexes see Ref. 11
and references therein.
18 W. A. Herrmann, S. K. Schneider, K. Ofele, M. Sakamoto and E.
¨
Herdtweck, J. Organomet. Chem., 2004, 689, 2441.
19 (a) R. van Asselt, C. J. Elsevier, W. J. J. Smeets and A. L. Spek, Inorg.
Chem., 1994, 33, 1521; (b) L. Canovese, F. Visentin, P. Uguagliati and
B. Crociani, J. Chem. Soc., Dalton Trans., 1996, 1921.
20 In the case of the reactions followed by NMR technique the integrated
signal related to the disappearing central allyl proton was treated
either by a monoexponential or by a second-order function. The kobs
values determined under pseudo-first order conditions divided by the
piperidine concentration turned out to be coincident with the k2 value
determined by the second-order function.
21 (a) R. A. III Kelly, H. Clavier, S. Giudice, N. M. Scott, E. D. Stevens,
J. Bordner, I. Samardjiiev, C. D. Hoff, L. Cavallo and S. P. Nolan,
Organometallics, 2008, 27, 202; (b) S. Wu¨rst and F. Glorius, Acc. Chem.
Res., 2008, 41, 1523.
22 C. A. Tolman, Chem. Rev., 1977, 77, 313.
23 Y. Yamamoto, K. Aoki and H. Yamazaki, Inorg. Chem., 1979, 18, 1681.
24 See for instance M. S. Collins, E. L. Rosen, V. M. Lynch and W.
Bielawski, Organometallics, 2010 DOI:10.1021 and refs. therein.
25 D. S. McGuinness, K. J. Cavell, B. W. Skelton and A. H. White,
Organometallics, 1999, 18, 1596.
26 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380–388
Cambridge Structural Database (Version 5. 31st November 2009 + 3
updates).
27 (a) M. D. Walter, R. A. Moorhouse, S. A. Urbin, P. S. White and M.
Brookhart, J. Am. Chem. Soc., 2009, 131, 9055 (UHOGII, UHOGOO);
(b) M. Asay, B. Donnadieu, A. Baceiredo, M. Soleilhavoup and G.
Bertrand, Inorg. Chem., 2008, 47, 3949 (EFAXIT); (c) A. Grotevendt,
M. Bartolome, D. J. Nielsen, A. Spannenberg, R. Jackstell, K. J. Cavell,
L. A. Oro and M. Beller, Tetrahedron Lett., 2007, 48, 9203 (VISLOZ);
(d) Y. Canac, C. Duhayon and R. Chauvin, Angew. Chem., Int. Ed.,
2007, 46, 6313 (WIJMUY); (e) S. Marrot, T. Kato, H. Gornitzka and
A. Baceiredo, Angew. Chem., Int. Ed., 2006, 45, 2598 (ICIXEY); (f) N.
D. Clement, K. J. Cavell and L.-L. Ooi, Organometallics, 2006, 25,
4155 (JENPIC); (g) A. C. Albeniz, P. Espinet, O. Lopez-Cimas and B.
Martin-Ruiz, Chem.–Eur. J., 2005, 11, 242 (FIDRAM); (h) J. Fornies,
A. Martin, L. F. Martin, B. Menjon and A. Tsipis, Organometallics,
2005, 24, 3539 (KAQBUA); (i) R. Jackstell, S. Harkal, H. Jiao, A.
Spannenberg, C. Borgmann, D. Rottger, F. Nierlich, M. Elliot, S. Niven,
K. Cavell, O. Navarro, M. S. Viciu, S. P. Nolan and M. Beller, Chem.–
Eur. J., 2004, 10, 3891 (XAGYEK, XAGYIO, XAGYOU, XAGYUA);
(j) R. Jackstell, M. G. Andreu, A. Frisch, K. Selvakumar, A. Zapf, H.
Klein, A. Spannenberg, D. Rottger, O. Briel, R. Karch and M. Beller,
Angew. Chem., Int. Ed., 2002, 41, 986 (MISPEJ); (k) G. Facchin, R.
Bertani, L. Zanotto, M. Calligaris and G. Nardin, J. Organomet. Chem.,
1989, 366, 409 (VAWJAE).
9 B. Crociani, S. Antonaroli, F. Di Bianca, L. Canovese, F. Visentin and
P. Uguagliati, J. Chem. Soc., Dalton Trans., 1994, 1145.
28 (a) D. Samar, J.-F. Fortin, D. Fortin, A. Decken and P. D. Harvey,
J. Inorg. Organomet. Polym. Mater., 2005, 15, 411 (GICRAM); (b) J.
Vicente, I. Saura-Llamas, J. Turpin, M. C. Ramirez de Arellano and P.
G. Jones, Organometallics, 1999, 18, 2683 (CEQJAJ).
10 T. R. Ward, Organometallics, 1996, 15, 2836.
11 R. H. Crabtree, in The Organometallic Chemistry of the Transition
Metals, Ch. 4, Fourth Ed. Wiley Interscience, 2005.
12 A. T. Normand, A. Stasch, L.-L. Ooi and K. J. Cavell, Organometallics,
2008, 27, 6507.
29 (a) A. I. Moncada, J. M. Tanski and L. M. Slaughter, J. Organomet.
Chem., 2005, 690, 6247 (KECPOY); (b) A. I. Moncada, S. Manne, J. M.
Tanski and L. M. Slaughter, Organometallics, 2006, 25, 491 (ECIBEY).
30 (a) I. G. Jung, Y. T. Lee, S. Y. Choi, D. S. Choi, Y. K. Kang and Y.
K. Chung, J. Organomet. Chem., 2009, 694, 297 (MOQKIN); (b) E.
S. Chernyshova, R. Goddard and K.-R. Porschke, Organometallics,
2007, 26, 3236 (PIKKUQ); (c) N. Marion, O. Navarro, J. Mei, E. D.
Stevens, N. M. Scott and S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101
(TEGZOV, TEGZUB, TEHBAK); (d) M. S. Viciu, F. K. Zinn, E. D.
Stevens and S. P. Nolan, Organometallics, 2003, 22, 3175 (OKEHUH,
OKEJAP); (e) Y. Tsuji, T. Kusui, T. Kojima, Y. Sugiura, N. Yamada,
S. Tanaka, M. Ebihara and T. Kawamura, Organometallics, 1998, 17,
4835 (JUCNEA).
31 (a) J. W. Faller and J. C. Wilt, Organometallics, 2005, 24, 5076
(XAWHUZ); (b) R. J. van Haaren, P. H. Keeven, L. A. von der Veen,
K. Goubitz, G. P. F. van Strijdonck, H. Oevering, J. N. H. Reek, P. C.
J. Kamer and P. W. N. M. van Leeuwen, Inorg. Chim. Acta, 2002, 327,
108 (TAFPIA); (c) R. J. van Haaren, K. Goubitz, J. Fraanje, G. P. F.
van Strijdonck, H. Oevering, B. Coussens, J. N. H. Reek, P. C. J. Kamer
and P. W. N. M. van Leeuwen, Inorg. Chem., 2001, 40, 3363 (IBIWEV,
13 (a) L. Canovese, F. Visentin, C. Santo and C. Levi, Organometallics,
2009, 28, 6762; (b) S. Mecking and W. Keim, Organometallics, 1996, 15,
˚
2650; (c) B. Akermark, B. Krakenberger, S. Hansson and A. Vitagliano,
Organometallics, 1987, 6, 620; (d) A. Scrivanti, G. Carturan and B.
Crociani, Organometallics, 1983, 2, 1612; (e) T. Boschi and B. Crociani,
Inorg. Chim. Acta, 1971, 5, 477; (f) T. Kajimoto, H. Takahashi and J.
Tsuji, J. Organomet. Chem., 1970, 23, 275.
14 (a) P. De Fremont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C.
Lightbody, C. L. B. MacDonald, J. A. C. Clyburne, C. D. Abernethy
and S. P. Nolan, Organometallics, 2005, 24, 6301; (b) T. Ramnial, C.
D. Abernethy, M. D. Spicer, I. D. McKenzie, I. D. Gay and J. A. C.
Clyburne, Inorg. Chem., 2003, 42, 1391.
15 M. S. Viciu, O. Navarro, R. F. Germaneau, R. A. Kelly III, W. Sommer,
N. Marion, E. D. Stevens, L. Cavallo and S. P. Nolan, Organometallics,
2004, 23, 1629.
16 At variance with the expected outcome the terminal allyl protons trans
to isocyanide resonate at higher field than those trans to the stronger
980 | Dalton Trans., 2011, 40, 966–981
This journal is
The Royal Society of Chemistry 2011
©