876
C.-Y. Liu et al. / Tetrahedron 67 (2011) 872e876
3. Conclusion
References and notes
1. (a) Huang, K.-T.; Wu, B.-C.; Lin, C.-C.; Luo, S.-C.; Chen, C.; Wong, C.-H.; Lin, C.-C.
Carbohydr. Res. 2006, 341, 2151; (b) Schwarz, J. B.; Kuduk, S. D.; Chen, X.-T.;
Sames, D.; Glunz, P. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 2662.
2. Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis;
Wiley: New York, NY, 2007.
3. Plattner, J. J.; Gless, R. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 8613.
4. Zheng, Q. Y.; Darbie, L. G.; Cheng, X.; Murray, C. K. Tetrahedron Lett. 1995, 36,
2001.
In conclusion, we have established the relative rate profiles for
the deacetylation of esters in the presence of five different oxido-
metallic species and two commonly used Lewis acids. Chemo-
selective deacetylation was achievable for esters with varying acyl
attributes (i.e., acetyl vs t-Boc, pivaloyl, and benzoyl), sterics and/or
electronics in the leaving groups by using a catalytic amount
(1e5 mol %) of MoO2Cl2 in warmed MeOH, which was more ef-
fective than Sc(OTf)3 or methanolic NH3 catalyzed system. In
combination with our recently developed catalytic peracetyaltion,
thioglycosylation, and acetal formation of 4,6-diols,20f this new
catalytic deacetylation protocol is thus suitable for routine syn-
thesis of mono and disaccharides. Investigation toward oligosac-
charide synthesis via a sequence of these catalytic transformations
by MoO2Cl2 or VO(OTf)2 is currently underway.
5. Herzig, J.; Nudelman, A.; Gottlieb, H. E.; Fischer, B. J. Org. Chem. 1986, 51, 727.
6. Roush, W. R.; Lin, X.-F. J. Am. Chem. Soc. 1995, 117, 2236.
ꢀ
7. Perez, M. G.; Maier, M. S. Tetrahedron Lett. 1995, 36, 3311.
8. (a) Yamamoto, N.; Nishikawa, T.; Isobe, M. Synlett 1995, 505 (special issue); (b)
Pozsgay, V. J. Am. Chem. Soc. 1995, 117, 6673.
9. Remme, N.; Koschek, K.; Schneider, C. Synlett 2007, 491.
10. Yanada, R.; Negoro, N.; Bessho, K.; Yanado, K. Synlett 1995, 1261.
11. Spaggiari, A.; Blaszczak, L. C.; Prati, F. Org. Lett. 2004, 6, 3885.
12. (a) Naemura, K.; Takahashi, N.; Chikamatsu, H. Chem. Lett. 1988, 30, 1717; (b)
Johnson, C. R.; Senanayake, C. H. J. Org. Chem. 1989, 54, 735; (c) Houille, O.;
ꢀ
Schmittberger, T.; Uguen, D. Tetrahedron Lett. 1996, 37, 625; (d) Lopez, R.;
ꢀ
~
ꢀ
Montero, E.; Sanchez, F.; Canada, J.; Fernandez-Mayoralas, A. J. Org. Chem. 1994,
59, 7027; (e) Holla, E. W.; Sinnwell, V.; Klaffke, W. Synlett 1992, 413; (f) Itoh, T.;
Uzu, A.; Kanda, N.; Takagi, Y. Tetrahedron Lett. 1996, 37, 91; (g) Takabe, K.; Mase,
N.; Hisano, T.; Yoda, H. Tetrahedron Lett. 2003, 44, 3267; (h) Hisano, T.; Onodera,
K.; Toyabe, Y.; Mase, N.; Yoda, H.; Takabe, K. Tetrahedron Lett. 2005, 46, 6293.
13. Ellervik, U.; Magnusson, G. Tetrahedron Lett. 1997, 38, 1627.
4. Experimental
4.1. General procedure for the catalytic deacylation
14. Neilson, T.; Werstiuk, E. S. Can. J. Chem. 1971, 49, 493.
In a 25-mL, two-necked, round-bottomed flask equipped with
an addition funnel was placed MoO2Cl2 (5 mol %) followed by the
addition of anhydrous methanol (2 mL) under N2 atmosphere. To
this solution was slowly added a solution of an acetate-containing
sugar (1 mmol) in methanol (3 mL) at ambient temperature via the
addition funnel. After completion of the reaction as evidenced by
TLC analysis, the reaction mixture was concentrated in vacuo and
the residue was quenched with cold saturated aqueous NaHCO3
(5 mL). Methylene chloride (10 mL) was added to the reaction
mixture. The organic layer was separated and washed with brine,
dried (MgSO4), filtered, and evaporated. The crude residue was
purified by column chromatography on silica gel. The product was
characterized by routine spectroscopic methods.
15. Askin, D.; Angst, C.; Danishefsky, S. J. Org. Chem. 1987, 52, 622.
ꢀ
16. Tran, A. T.; Deydier, S.; Bonnaffe, D.; Narvor, C. L. Tetrahedron Lett. 2008, 49, 2163.
17. (a) Hanamoto, T.; Sugimoto, Y.; Yokoyama, T.; Inanaga, J. J. Org. Chem. 1996, 61,
4491; (b) Sharma, G. V. M.; Ilangovan, A. Synlett 1999, 1963.
18. Xu, Y.-C.; Bizuneh, A.; Walker, C. J. Org. Chem. 1996, 61, 9086.
19. Baptistella, L. H. B.; Dos Santos, J. F.; Ballabio, K. C.; Marsaioli, A. J. Synthesis
1989, 436.
20. (a) Chen, C.-T.; Kuo, J.-H.; Li, C.-H.; Barhate, N. B.; Hon, S.-W.; Li, T.-W.; Chao, S.-
D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H.; Lin, J.-S.; Liu, C.-J.; Chou, Y.-C. Org. Lett. 2001,
3, 3729; (b) Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-
H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188; (c) Liu, C.-Y.; Pawar, V. D.; Kao, J.-Q.;
Chen, C.-T. Adv. Synth. Catal. 2010, 352, 188; (d) Chen, C.-T.; Munot, Y. S. J. Org.
Chem. 2005, 70, 8625; (e) Chen, C.-T.; Kuo, J.-H.; Ku, C.-H.; Weng, S.-S.; Liu, C.-Y.
J. Org. Chem. 2005, 70, 1328; (f) Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan,
M.-D. Org. Lett. 2005, 7, 3343; (g) Weng, S.-S.; Lin, Y.-D.; Chen, C.-T. Org. Lett.
2006, 8, 5633; (h) Lin, Y.-D.; Kao, J.-Q.; Chen, C.-T. Org. Lett. 2007, 9, 5195; (i)
Chen, C.-T.; Lin, Y.-D.; Liu, C.-Y. Tetrahedron 2009, 65, 10470.
21. (a) Baumhof, P.; Mazitschek, R.; Giannis, A. Angew. Chem., Int. Ed. 2001, 40, 3672;
(b) Wang, S.-M.; Zhang, Y.-B.; Liu, H.-M.; Tu, G.-B.; Wang, K.-R. Steroids 2007, 72,
26.
Acknowledgements
22. Evans, D. A.; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.; Xu, R. J. Am. Chem. Soc.
We thank the National Science Council of Taiwan for a generous
financial support of this research.
2007, 129, 10029.
23. For application of MoO2Cl2 in organic transformation, see: (a) Jeyakumar, K.;
Chand, D. K. J. Chem. Sci. 2009, 121, 111 For the application of dioxomolybdenum
(VI) complexes in organic synthesis, see: (b) Sakakura, A.; Kondo, R.; Ishihara,
K. Org. Lett. 2005, 7, 1971; (c) Sakakura, A.; Umemura, S.; Kondo, R.; Ishihara, K.
Adv. Synth. Catal. 2007, 349, 551; (d) Sakakura, A.; Kondo, R.; Umemura, S.;
Ishihara, K. Adv. Synth. Catal. 2007, 349, 1641.
24. Yan, M.-C.; Chen, Y.-N.; Wu, H.-T.; Lin, C.-C.; Chen, C.-T.; Lin, C.-C. J. Org. Chem.
2007, 72, 299.
25. Competing debenzoylation leading to 3d was observed right at the beginning
of the catalytic reaction.
Supplementary data
Supplementary data related to this article can be found online
files and InChIKeys of the most important compounds described in
this article.