938
F. Yang et al. / Tetrahedron Letters 52 (2011) 936–938
2. (a) Rogers, E.; Araki, H.; Batory; McInnis, C. E.; Njardarson, J. T. J. Am. Chem. Soc.
2s'
(a)
2007, 129, 2768–2769; (b) Brandau, S.; Maerten, E.; Jorgensen, K. J. Am. Chem.
Soc. 2006, 128, 14986–14991; (c) De Clercq, P. J. Chem. Rev. 1997, 97, 1755–
1792.
S
Ph
p-tolyl
S
Ph
p-tolyl
3. (a) Dang, Y.; Chen, Y. Eur. J. Org. Chem. 2007, 5661–5664; (b) Dang, Y.; Chen, Y. J.
Org. Chem. 2007, 72, 6901–6904; (c) Rosy, P. A.; Hoffmann, W.; Muller, N. J. Org.
Chem. 1980, 45, 617–620.
S
Ph
p-tolyl
(c)
(b)
4. (a) McIntosh, J. M.; Goodbrand, H. B. Tetrahedron Lett. 1973, 34, 3157–3160; (b)
McIntosh, J. M.; Goodbrand, H. B.; Masse, G. M. J. Org. Chem. 1974, 39, 202–206;
(c) McIntosh, J. M.; Masse, G. M. J. Org. Chem. 1975, 40, 1294–1298.
5. (a) Nakayama, J.; Machida, H.; Hoshino, M. Tetrahedron Lett. 1985, 26, 1981–
1982; (b) McMurry, J. E.; Kees, K. L. J. Org. Chem. 1977, 42, 2655–2656.
6. (a) Birch, S. F.; McAllan, D. T. Nature 1950, 165, 899; (b) Blenderman, W. G.;
Joullie, M. M. Tetrahedron Lett. 1979, 20, 4985–4988.
7. Morita, N.; Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897–1899.
8. (a) Spagnol, G.; Heck, M.-P.; Nolan, S. P.; Mioskowski, C. Org. Lett. 2002, 4,
1767–1770; (b) Conrad, J. C.; Pamas, H. H.; Snelgrove, J. L.; Fogg, D. E. J. Am.
Chem. Soc. 2005, 127, 11882–11883.
Br
I
MeO
CF3
5s
4s
3s'
Scheme 3. Reagents and conditions: (a) DDQ (3 equiv), toluene, reflux, 98%; (b) (i)
Pd(PPh3)4 (10 mol %), LiCl, DMF, allyltributylstannane, 100 °C, 24 h; (ii) Pd(PPh3)4
(10 mol %), LiCl, DMF, tributylvinylstannane, 100 °C, 24 h, 88% for two-steps; (c) (i)
Pd(PPh3)4 (3 mol %), PPh3, K2CO3, THF, 4-(trifluoromethyl)phenylboronic acid, 80 °C,
12 h; (ii) Pd(PPh3)4 (6 mol %), K3PO4, toluene/dioxane, 4-methoxyphenylboronic
acid, 100 °C, 12 h, 66% for two-steps. DMF = dimethylforamide, THF =
tetrahydrofuran.
9. For a review, see: Larock, R. C. In Acetylene Chemistry. Chemistry, Biology, and
Material Science; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH:
New York, 2005; pp 51–99. Chapter 2.
In conclusion, we have developed a facile, efficient, and general
method for the synthesis of dihydrothiophenes through the elec-
trophilic iodocyclization. This methodology accommodates a wide
range of functional groups and affords various highly substituted
3,4-diiododihydrothiophenes efficiently under mild reaction con-
ditions. The resulting iodine-containing products can be readily
transferred to the more complex thiophenes by using known or-
ganic transformations. Investigation into the extension of the pres-
ent methodology to the construction of other heterocycles and
application to the synthesis of useful optoelectronic materials are
in progress.
General procedure: I2 (0.6 mmol, 152 mg) was added to a solu-
tion of S-hydroxy-4-phenylbut-2-ynyl ethanethioate 1a (0.2 mmol,
44 mg) in dichloromethane (2 mL), and the resulting mixture was
stirred at room temperature for 1 h. The reaction mixture was di-
luted with 10 mL dichloromethane, washed with saturated sodium
thiosulfate. The organic layer was dried with anhydrous MgSO4.
After concentration of the filtrate, the residue was purified by chro-
matography on silica gel to afford 3,4-diiodo-2-phenyldihydrothi-
ophenes 2a (73.6 mg, 89%) as a slight yellow solid.
10. For selected recent examples of the synthesis of O-heterocycles, see: (a)
Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org.
Chem. 2010, 75, 897–901; (b) Verma, A. K.; Aggarwal, T.; Rustagi, V.; Larock, R.
C. Chem. Commun. 2010, 46, 4064–4066; (c) Mehta, S.; Waldo, J. P.; Larock, R. C.
J. Org. Chem. 2009, 74, 1141–1147; (d) Worlikar, S. A.; Kesharwani, T.; Yao, T.;
Larock, R. C. J. Org. Chem. 2007, 72, 1347–1353; (e) Bew, S. P.; EL-Taeb, G. M. M.;
Knight, D. V.; Tan, W.-F. Eur. J. Org. Chem. 2007, 5759–5770; (f) Barluenga, J.;
Vázquez-Villa, H.; Ballesteros, A.; Gánzalez, J. M. J. Am. Chem. Soc. 2003, 125,
9028–9029.
11. For selected recent examples of the synthesis of N-heterocycles, see: (a)
Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed.
2003, 42, 2406–2409; (b) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037–1040; (c)
Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539–541; (d) Zhang, X.;
Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763–766; (e) Huang, Q.;
Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437–3444.
12. (a) Ren, X. F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.; Gonzalez, J.; Turos,
E. J. Org. Chem. 1998, 63, 8898–8917; (b) Flynn, B. L.; Flynn, G. P.; Hamel, E.;
Jung, M. K. Bioorg. Med. Chem. Lett. 2001, 11, 2341–2343; (c) Ren, X. F.; Turos,
E.; Lake, C. H.; Churchill, M. R. J. Org. Chem. 1995, 60, 6468–6483; (d) Ren, X. F.;
Konaklieva, M. I. L.; Krajkowski, M.; Janik, T. S.; Turos, E.; Lake, C. H.; Churchill,
M. R. J. Org. Chem. 1995, 60, 6484–6495; (e) Hessian, K. O.; Flynn, B. L. Org. Lett.
2003, 5, 4377–4380.
13. (a) Kruglov, A. A. Zh. Obshch. Biol. 1937, 7, 2605–2608; (b) Ji, K.-G.; Zhu, H.-T.;
Yang, F.; Shu, X.-Z.; Zhao, S.-C.; Liu, X.-Y.; Shaukat, A.; Liang, Y.-M. Chem. Eur. J.
2010, 16, 6151–6154.
14. (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew.
Chem., Int. Ed. 2007, 46, 4764–4766; (b) Fischer, D.; Tomeba, H.; Pahadi, N. K.;
Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720–15725; (c)
Huo, Z.; Tomeba, H.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 5531–5533; (d)
Huo, Z.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266–1270.
15. For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127–
2298; (b) Yamamoto, Y. J. Org. Chem. 2007, 72, 7817–7831; (c) Patil, N. T.;
Yamamoto, Y. Chem. Rev. 2008, 108, 3395–3442.
Acknowledgment
This work was financially supported by a Scientific Research (B)
from Japan Society for Promotion of Science (JSPS). F.Y. acknowl-
edges the support of China Scholarship Council (CSC).
16. Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1996, 37,
6843–6846.
Supplementary data
17. For the Lewis acidic iodine-catalyzed C- and O-nucleophilic substitution
reactions of propargyl alcohols, see: (a) Srihari, P.; Bhunia, D. C.; Sreedhar, P.;
Mandal, S. S.; Reddy, J. S. S.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120–8124;
(b) Yadav, J. S.; Reddy, B. V. S.; Thrimurtulu, N.; Reddy, N. M.; Prasad, A. R.
Tetrahedron Lett. 2008, 49, 2031–2033.
Supplementary data associated with this article can be found, in
18. (a) Ishikawa, T.; Manabe, S.; Aikawa, T.; Kudo, T.; Saito, S. Org. Lett. 2004, 6,
2361–2364; (b) Yao, L.-F.; Shi, M. Org. Lett. 2007, 9, 5187–5190; (c) Yao, L.-F.;
Shi, M. Chem. Eur. J. 2009, 15, 3875–3881; (d) Komeyama, K.; Saigo, N.; Miyagi,
M.; Takaki, K. Angew. Chem., Int. Ed. 2009, 48, 9875–9878.
References and notes
19. The 1H and 13C NMR spectra of 5s are identical to the reported literature, see:
Yanagisawa, S.; Ueda, K.; Sekizawa, H.; Itami, K. J. Am. Chem. Soc. 2009, 131,
14622–14623.
1. (a) Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276; (b) Liu,
H. H.; Chen, Y. J. Mater. Chem. 2009, 19, 706–709; (c) Wu, C.; Decker, E. R.; Blok,
N.; Bui, H.; You, T. J.; Wang, J.; Bourgoyne, A. R.; Knowles, V.; Berens, K. L.;
Holland, G. W.; Brock, T. A.; Dixon, R. A. F. J. J. Med. Chem. 2004, 47, 1969–1989;
(d) Bagli, J. F.; Mackay, W. D.; Ferdinandi, E. J. Med. Chem. 1976, 19, 876–882; (e)
Schatz, J. Sci. Synth. 2001, 9, 287–422.