Jean-Louis G. Etoga et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2680–2683
2683
21. Carrigan, C. N.; Esslinger, C. S.; Bartlett, R. D.; Bridges, R. J.; Thompson, C. M.
Bioorg. Med. Chem. Lett. 1999, 9, 2607.
ratory for Neuromolecular Production (NIH P30-NS055022) and
the COBRE Center for Structural and Functional Neuroscience
(NIH P20-RR015583).
22. Kish, P.E., Ueda, T. Methods Enzymol. 1989, 174, 9. Assays were initiated by the
addition of 3H-glutamate inhibitors (0.01–5 mM) to the synaptic vesicles
(approx. 0.1 mg protein). Rates of uptake were normalized to protein content.
23. Patel, S. A.; Nagy, J. O.; Bolstad, E. D.; Gerdes, J. M.; Thompson, C. M. Bioorg. Med.
Chem. Lett. 2007, 17, 5125.
References and notes
24. Roseth, S.; Fykse, E. M.; Fonnum, F. J. Neurochem. 1995, 65, 96.
25. Roseth, S.; Fykse, E. M.; Fonnum, F. Biochem. Pharmacol. 1998, 56, 1243.
26. Thompson, C. M.; Davis, E.; Carrigan, C. N.; Cox, H. D.; Bridges, R. J.; Gerdes, J. M.
Curr. Med. Chem. 2005, 12, 2041.
27. Bridges, R. J.; Stanley, M. S.; Anderson, M. W.; Cotman, C. W.; Chamberlin, A. R.
J. Med. Chem. 1991, 34, 717.
28. Dunlop, J.; Fear, A.; Griffiths, R. NeuroReport 1991, 2, 377.
29. Synthesis of hydantoins 2a–e. Compounds 2a–e were synthesized from
aldehydes (1a–e). Compounds 1a–e (1.0 g; 5.40 mmol) were dissolved in 1:1
CH3OH/H2O and (NH4)2CO3 (4.5 g; 47.4 mmol) and KCN (1.3 g, 20 mmol) were
added. The mixture was heated (58–60 °C; 3 h), concentrated to two-thirds,
and chilled to 0 °C. Crystalline products were filtered, washed with water, dried
and characterized by 1H NMR and MS. The resultant hydantoins were
hydrolyzed directly.
30. Chruma, J. J.; Liu, L.; Zhou, W.; Breslow, R. Bioorg. Med. Chem. 2005, 13,
5873.
31. Nenajdenko, V. G.; Zakurdaev, E. P.; Prusov, E. V.; Balenkova, E. S. Russ. Chem.
Bull. 2004, 53, 2866.
32. Stalker, R. A.; Munsch, T. E.; Tran, J. D.; Nie, X.; Warmuth, R.; Beatty, A.;
Aakeröy, C. B. Tetrahedron 2002, 58, 4837.
1. Byrnes, K. R.; Loane, D. J.; Faden, A. I. Neurotherapeutics 2009, 6, 94.
2. Choi, D. W.; Rothman, S. M. Annu. Rev. Neurosci. 1990, 13, 171.
3. Balazs, R.; Bridges, R. J.; Cotman, C. W. Excitatory Amino Acid Transmission in
Health and Disease; Oxford University Press: New York, 2006.
4. Jane, D. E.; Lodge, D.; Collingridge, G. L. Neuropharmacology 2009, 56, 90.
5. Swanson, G. T.; Sakai, R. Prog. Mol. Subcell Biol. 2009, 46, 123.
6. Shigeri, Y.; Shimamoto, K. Nippon Yakurigaku Zasshi 2003, 122, 253.
7. Reis, H. J.; Guatimosim, C.; Paquet, M.; Santos, M.; Ribeiro, F. M.; Kummer, A.;
Schenatto, G.; Vsalgado, J. V.; Vieira, L. B.; Teixeira, A. L.; Palotas, A. Curr. Med.
Chem. 2009, 16, 796.
8. Bridges, R. J.; Esslinger, C. S. Pharmacol. Ther. 2005, 107, 271.
9. Patel, S.A., Warren, B.A., Rhoderick, J.F., Bridges, R.J. Neuropharmacology 2004,
46, 273. SNB-19 transport assay: Wells were pre-incubated (30 °C, 10 min) in
HEPES (pH 7.4) Hank’s balanced salt solution (HBHS). Uptake was initiated by
addition of 3H-
inhibition, 3H-
-glutamate (100
Each well was rinsed with HBHS (0 °C, 3ꢁ) and the cells treated with 1 mL
0.4 M NaOH for 24 h. Acetic acid (5 L) was added to an aliquot (200 L) and
the radioactivity quantified versus background.
L-glutamate (20–500
lM) and incubated for 5 min. For
L
l
M) and inhibitor (500
lM) were added.
l
l
10. Domercq, M.; Sanchez-Gomez, M. V.; Sherwin, C.; Etxebarria, E.; Fern, R.;
Matute, C. J. Immunol. 2007, 178, 6549.
11. Burdo, J.; Dargusch, R.; Schubert, D. J. Histochem. Cytochem. 2006, 54, 549.
12. Bridges, R. J.; Patel, S. A. Pharmacology of Glutamate Transport in the CNS:
Substrates and Inhibitors of Excitatory Amino Acid Transporters and the Glutamate
Cystine Exchanger System xꢀc ; Springer: NY, 2009.
33. Shanbhag, V. M.; Martell, A. E. Inorg. Chem. 2002, 29, 1023.
34. Spectral data for selected compounds. Compound 2c: yield 75%; mp 258–
261 °C; 1H NMR (400 MHz, DMSO-d6): d 12.02 (br s, 1H), 10.59 (br s, 1H),
8.06 (s, 1H), 7.59 (s, 1H), 7.09 (br s, 1H), 4.99 (s, 1H); ESI MS m/z = 167
(M+1); IR (KBr) (m
max/cmꢀ1): 3414, 3241, 2700, 1729, 1456. Anal. Calcd for
C6H6N4O2: C, 43.38; H, 3.64; N, 33.72. Found: C, 43.33; H, 3.59; N, 33.62.
13. Takamori, S. Neurosci. Res. 2006, 55, 343.
Compound 3c: yield 55%; mp >300 °C; 1H NMR (400 MHz, D2O): d 7.51 (s,
14. Moriyama, Y.; Omote, H. Biol. Pharm. Bull. 2008, 31, 1844.
15. Carlson, M. D.; Kish, P. E.; Ueda, T. J. Neurochem. 1989, 53, 1889.
16. Natale, N. R.; Magnusson, K. R.; Nelson, J. K. Curr. Top. Med. Chem. 2006, 6, 823.
17. Warren, B. A.; Patel, S. A.; Nunn, P. B.; Bridges, R. J. Toxicol. Appl. Pharmacol.
2004, 200, 83.
18. Bartlett, R.D. Ph.D. Thesis; The University of Montana, Missoula, MT, 1999.
19. Bartlett, R. D.; Esslinger, C. S.; Thompson, C. M.; Bridges, R. J.
Neuropharmacology 1998, 37, 839.
1H), 6.88 (s, 1H), 4.91 (s, 1H); ESI MS m/z = 142 (M+1); IR (KBr) (m
max/cmꢀ1):
3250, 2348, 2287, 1593, 1462, 1377. Anal. Calcd for C5H7N3O2: C, 42.55; H,
5.00; N, 29.77. Found: C, 41.88; H, 5.20; N, 29.64. Compound 5h: yield 52%;
mp >300 °C; 1H NMR (400 MHz, D2O): d 7.32 (d, J = 7.35 Hz, 1H), 7.11 (d,
J = 7.35 Hz, 1H), 5.07 (s, 1H); 13C: d 173.5, 148.3, 141.2, 131.8, 131.5, 55.7;
HRMS m/z = 237.9833 (M+1); IR (KBr) (m
max/cmꢀ1): 2634, 1746, 1613, 1527,
1214, 1165. Anal. Calcd for C6H7NO5S2: C, 30.37, H, 2.97, N, 5.90. Found: C,
30.51, H, 2.88, N, 5.94.
20. Carrigan, C. N.; Bartlett, R. D.; Esslinger, C. S.; Cybulski, K. A.; Tongcharoensirikul,
P.; Bridges, R. J.; Thompson, C. M. J. Med. Chem. 2002, 45, 2260.
35. Sontheimer, H. J. Neurochem. 2008, 105, 287.