5954
J . Org. Chem. 1999, 64, 5954-5957
Deh om ologa tion of Ald eh yd es via Oxid a tive Clea va ge of Silyl En ol
Eth er s w ith Aqu eou s Hyd r ogen P er oxid e Ca ta lyzed by
Cetylp yr id in iu m P er oxotu n gstop h osp h a te u n d er Tw o-P h a se
Con d ition s
Satoshi Sakaguchi, Yumiko Yamamoto, Takuma Sugimoto, Hiroyo Yamamoto, and
Yasutaka Ishii*
Department of Applied Chemistry, Faculty of Engineering & High-Technology Research Center,
Kansai University, Suita, Osaka 564-8680, J apan
Received March 17, 1999
Dehomologation of aldehydes has been first successfully achieved via oxidative cleavage of silyl
enol ethers, derived from aldehydes and trimethylchlorosilane, using aqueous hydrogen peroxide
in the presence of a catalytic amount of peroxotungstophophate (PCWP) under phase-transfer
conditions. For instance, the oxidation of 1-[(trimethylsilyl)oxy]-1-octene resulting from octanal
and Me3SiCl with 35% H2O2 catalyzed by PCWP in dichloromethane at room temperature afforded
the one-carbon shorter aldehyde, heptanal, in 79% yield. A variety of silyl enol ethers were also
converted into one-carbon shorter aldehydes in good yields. The oxidation under homogeneous
conditions using tert-butyl alcohol gave hydrolysis products such as 2-oxooctanol and octanal. It is
of interest that [1-(trimethylsilyl)oxy]-1,10-undecadiene involving an enol moiety and a terminal
double bond afforded exclusively 9-decenal, in which the enol moiety was selectively oxidized. A
plausible reaction path for the oxidative cleavage of silyl enol ethers by the present system has
been suggested from the oxidation results of R-[(trimethylsilyl)oxy]styrene.
In tr od u ction
Among these oxidants, aqueous hydrogen peroxide, a
cheap and environmentally benign oxidant, has attracted
much interest in recent years. Tungsten compounds such
as polyoxotungstophosphates and tungstic acid are ef-
ficient catalysts for the oxidative cleavage of olefinic
double bonds to carboxylic acids with aqueous hydrogen
peroxide.6 However, the transformation of alkenes to
aldehydes via oxidative cleavage is rarely explored
because of the difficulty in controlling the oxidation at
the stage of the formation of aldehydes, except for the
formation of glutaraldehyde by the oxidative cleavage of
cyclohexene with anhydrous hydrogen peroxide using H3-
PMo10W2O40 as a catalyst.10
The oxidation of silyl enol ethers to R-hydroxyketones
has been achieved by using various oxidation systems.11
In a previous paper, we showed that the silyl enol ether
1-[(trimethylsilyl)oxy]-1-octene (1) was first successfully
converted into the R-hydroxy ketone 2-oxooctanol (2)
using aqueous hydrogen peroxide as an oxidant in the
presence of a catalytic amount of cetylpyridinium per-
oxotungstophosphate (PCWP), [C5H5N+(CH2)15CH3]3{PO4-
Oxidative cleavage of carbon-carbon double bonds is
a fundamental and important transformation in synthetic
organic chemistry.1 Ozonolysis2 and oxidation by stoi-
chiometric oxidants such as osmiun tetraoxide,3 ruthe-
nium tetraoxide,4 and potassium permanganate5 are
frequently used for this purpose. However, because these
reagents have the obvious drawbacks of being toxic and
expensive, a number of catalytic systems using H2O2,6
NaOCl,7 NalO4,8 and peracetic acid9 as oxidants have
been examined.
(1) Haines, A. H. Methods for the Oxidation of Organic Compounds;
Academic Press: New York, 1985.
(2) Bayley, P. S. Ozonation in Organic Chemistry; Academic Press:
New York, 1978; Vol. 1.
(3) Pappo, R.; Allen, D. S., J r.; Lemieux, R. U.; J ohnson, W. S. J .
Org. Chem. 1956, 21, 478.
(4) (a) Starks, C. M. J . Am. Chem. Soc. 1971, 93, 195. (b) Sam, D.
J .; Simmons, H. E. J . Am. Chem. Soc. 1972, 94, 4024. (c) Kraocho, A.
P.; Larson, J . R.; Eldrige, J . M. J . Org. Chem. 1977, 42, 3749. (d) Lee,
D. G.; Cheng, V. S. J . Org. Chem. 1978, 43, 1532.
(5) Lee, D. G.; van der Engh, M. In Oxidation in Organic Chemistry;
Trahanovsky, W. S., Ed.; Academic Press: New York, 1973; Part B, p
186.
(6) (a) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.;
Ogawa, M. J . Org. Chem. 1988, 53, 3587. (b) Oguchi, T.; Ura, T.; Ishii,
Y.; Ogawa, M. Chem. Lett. 1989, 857. (c) Sakata, Y.; Katayama, Y.;
Ishii, Y. Chem. Lett. 1992, 671. (d) Schwegler, M.; Floor, M.; Bekkum,
H. Tetrahedron Lett. 1988, 29, 823. (e) Sato, K.; Aoki, M.; Noyori, R.
Science 1998, 281, 1646. (f) Antonelli, E.; D′Aloisio, R.; Gambaro, M.;
Fiorani, T.; Venturello, C. J . Org. Chem. 1998, 63, 7190. (g) J ohnstone,
A.; Middleton, P. J .; Sanderson, W. R.; Service, M.; Harrison, P. R. In
New Developments in Selective Oxidation II; Corberan, V. C., Bellon,
S. V., Eds; Elevier: Netherlands, 1994; pp 609-614. (h) Brooks, C.
D.; Huang, L.; McCarron, M.; J ohnstone, R. A. W. Chem. Commun.
1999, 37.
(7) Wolfe, S.; Hasan, S. K.; Campbell, J . R. J . Chem. Soc., Chem.
Commun. 1970, 1420. (b) Foglia, T. A.; Barr, P. A.; Malloy, A. J .;
Costanzo, M. J . J . Am. Oil Chem. Soc. 1977, 54, 870A.
(8) Carlsen, H. J .; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J .
Org. Chem. 1981, 46, 3936.
(10) Furukawa, H.; Nakamura, T.; Inagaki, H.; Nishikawa, E.; Imai,
C.; Misono, M. Chem. Lett. 1988, 877.
(11) (a) Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetra-
hedron Lett. 1974, 4319. (b) Hassner, A.; Reuss, R.; Pinnick, H. W. J .
Org. Chem. 1975, 40, 3427. (c) Rubottom, G. M.; Gruber, J . M.; Mong,
G. M. J . Org. Chem. 1976, 41, 1673. (d) J efford, C. W.; Kohmoto, S.;
Boukouvalas, J .; Burger, U. J . Am. Chem. Soc. 1983, 105, 6498. (e)
Oppolzer, W.; Dudfield, P. Helv. Chim. Acta 1985, 68, 216. (f) Davis,
F. A.; Sheppard, A. C. J . Org. Chem. 1987, 52, 954. (g) Takai, T.;
Yamada, T.; Rhode, O.; Mukaiyama, T. Chem. Lett. 1991, 281. (h)
Reddy, D. R.; Thornton, E. R. J . Chem. Soc., Chem. Commun. 1992,
172. (i) Yorozu, K.; Takai, T.; Yamada, T.; Mukaiyama, T. Bull. Chem.
Soc. J pn. 1994, 67, 2195. (j) Fukuda, T.; Katsuki, T. Tetrahedron Lett.
1996, 37, 4389. (k) Adam, W.; Fell, R. T.; Mock-Knoblauch, C.; Saha-
Msˇller, C. R. Tetrahedron Lett. 1996, 37, 6531. (l) Rozen, S.; Bareket,
Y. J . Chem. Soc., Chem. Commun. 1996, 627. (m) Raju, S. V. N.;
Upadhya, T. T.; Ponrathnam, S.; Daniel, T.; Sudalai, A. J . Chem. Soc.,
Chem. Commun. 1996, 1969. (n) Stankovic, S.; Espenson, J . H. J . Org.
Chem. 1998, 63, 4129.
(9) Washecheck, P. H.; Ger. Offen. 2,046,034, 1971 to Continental
Oil Co.; Chem. Abstr. 1971, 75, 35158.
10.1021/jo990477x CCC: $18.00 © 1999 American Chemical Society
Published on Web 07/14/1999