962
W. P. D. Goldring et al. / Tetrahedron Letters 52 (2011) 960–963
Acknowledgements
We gratefully acknowledge the Nuffield Foundation and
Queen’s University Belfast for their financial support.
References and notes
1. (a) Wilson, K. E.; Tsou, N. N.; Guan, Z.; Ruby, C. L.; Pelaez, F.; Gorrochategui, J.;
Vicente, F.; Onishi, H. R. Tetrahedron Lett. 2000, 41, 8705–8709; (b) Kamigaichi,
T.; Nakajima, M.; Tani, H. Japanese Patent JP 10101666 A, 1998; Chem. Abstr.
1998, 129, 236773.
2. (a) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1990, 55, 1919–1928; (b) Pandey, R.
C.; Toussaint, M. W.; Stroshane, R. M.; Kalita, C. C.; Aszalos, A. A.; Garretson, A.
L.; Wei, T. T.; Byrne, K. M.; Geoghegan, R. F., Jr.; White, R. J. J. Antibiot. 1981, 34,
1389–1401.
3. For examples of the construction of spiro-fused indan-1,3-diones from 3-
ylidenephthalides, see: Watanabe, M.; Morimoto, H.; Tomoda, M.; Iwanaga, U.
Synthesis 1994, 1083–1086.
4. (a) Morita, H.; Takeda, M.; Yoshimura, T.; Fujii, T.; Ono, S.; Shimasaki, C. J. Org.
Chem. 1999, 64, 6730–6737; (b) Rewinkel, J. B. M.; Zwanenburg, B. Recl. Trav.
Chim. Pays-Bas 1990, 109, 190–196; (c) Lenz, B. G.; Regeling, H.; Zwanenburg, B.
Tetrahedron Lett. 1984, 25, 5947–5948.
5. (a) Hegazi, S.; Titouani, S. L.; Soufiaoui, M.; Tahdi, A. Tetrahedron 2004, 60,
10793–10798; (b) Salaheddine, H.; Titouani, S. L.; Soufiaoui, M.; Tahdi, A.
Tetrahedron Lett. 2002, 43, 4351–4353.
6. For the isolation of related members of this family of natural products, see:
Kamigaichi, T.; Nakajima, M.; Tani, H. Japanese Patent JP 11158109 A, 1999;
Chem. Abstr. 1999, 131, 378444.
7. For the syntheses of related members of this family of natural products,
including coleophomones B, C and D, see: (a) Nicolaou, K. C.; Montagnon, T.;
Vassilikogiannakis, G.; Mathison, C. J. N. J. Am. Chem. Soc. 2005, 127, 8872–
8888; (b) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G. Chem. Commun.
2002, 2478–2479; (c) Nicolaou, K. C.; Vassilikogiannakis, G.; Montagnon, T.
Angew. Chem., Int. Ed. 2002, 41, 3276–3281.
8. (a) Deady, L. W.; Desneves, J.; Kaye, A. J.; Thompson, M.; Finlay, G. J.; Baguley, B.
C.; Denny, W. A. Bioorg. Med. Chem. 1999, 7, 2801–2809; (b) Hauser, F. M.; Zhou,
M. J. Org. Chem. 1996, 61, 5722; (c) Loewenthal, H. J. E.; Schatzmiller, S. J. Chem.
Soc., Perkin Trans. 1 1975, 2149–2157; (d) Loudon, J. D.; Razdan, R. K. J. Chem.
Soc. 1954, 4299–4303.
Figure 2. ORTEP representation of the cycloadduct exo-12 at the 50% probability
level.
9. (a) Milagre, C. D. F.; Milagre, H. M. S.; Santos, L. S.; Lopes, M. L. A.; Moran, P. J. S.;
Eberlin, M. N.; Rodrigues, J. A. R. J. Mass Spectrom. 2007, 42, 1287–1293; (b)
Kim, M. Y.; Lim, G. J.; Lim, J. I.; Kim, D. S.; Kim, I. Y.; Yang, J. S. Heterocycles 1997,
45, 2041–2043.
Table 1
Selected carbon NMR chemical shift data for the cyclohexenes 19a, 20 and 21a
19a
20
21
10. For a synthesis of
a-methylene indanones and related structures, see: (a)
C-30
C-40
29.0
22.8
32.4
22.4
44.8
38.8
Chatani, N.; Kamitani, A.; Oshita, M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc.
2001, 123, 12686–12687; (b) Bhattacharya, A.; Segmuller, B.; Ybarra, A. Synth.
Commun. 1996, 26, 1775–1784; (c) Muckensturm, B.; Diyani, F. J. Chem. Res. (M)
1995, 2544–2556; (d) Gras, J.-L. Tetrahedron Lett. 1978, 19, 2111–2114.
11. For the preparation of cyclopentadiene (10) from the corresponding dimer, see:
Magnusson, G. J. Org. Chem. 1985, 50, 1998, and references cited therein.
12. Severin, T.; Adam, R. Chem. Ber. 1975, 108, 88–94.
a
The 13C NMR (25 MHz) data for compounds 20 and 21 were recorded in CDCl3
(see Ref. 21c).
13. For a related method to access the ene-dione 15, see: Severin, T.; Kullmer, H.
Chem. Ber. 1971, 104, 440–448.
0
0
H3a , and between H3b and H3b (see Fig. 1), and supported by se-
lected proton NMR coupling constants.
14. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of
Organic Compounds, 5th ed.; John Wiley & Sons: New York, 1991, p 221.
15. Purification of the mixture using flash column chromatography gave the major
isomer 16 and an inseparable 1:1 mixture of the isomers 16 and 17. In our
hands, the minor isomer 17 could not be separated from the mixture.
16. (a) Gaonac’h, O.; Maddaluno, J.; Chauvin, J.; Duhamel, L. J. Org. Chem. 1991, 56,
4045–4048; (b) Paterson, I.; Price, L. G. Tetrahedron Lett. 1981, 22, 2833–2836.
In summary, the indanone-based dienophiles 9 and 15 were
constructed and successfully employed in [4 + 2]-cycloaddition
reactions leading to the spiro-fused indanone structures exo-12,
endo-16 and exo-19a. The structures of the major adducts endo-
16 and exo-19a were assigned based on COSY, HMQC and NOE
NMR data, and that of exo-12 was based on a single-crystal X-ray
structure determination. The cycloaddition reactions using the
-methylene indanone 9 preferentially formed the exo adducts,
for example, 12 and 19a, while in contrast, the reaction which
employed the -methylene indanone 15 preferentially formed
the endo adduct, for example, 16. To the best of our knowledge,
the results of these preliminary studies represent the first cycload-
dition-based approach to carbocyclic spiro-fused indanones, and
have established the precedent for future applications in synthesis.
Work is now underway to optimize the reaction conditions,
evaluate different methods, and expand this synthetic approach
to include other substrates. Furthermore, we plan to exploit the
regio- and diastereoselective cycloaddition reaction between 9
and the diene 18, leading to the adduct 19a, in the construction
of a spirocyclic system, cf. 2, for elaboration of coleophomone A
(1). A full account of our cycloaddition approach to spiro-fused
indanones, together with our progress towards the natural prod-
uct, will be disclosed in due course.
17.
A
neat sample of the silyl ether 19a, stored at 5 °C over 40 weeks, was
quantitatively converted into the secondary alcohol 19b.
18. Satisfactory spectroscopic data were recorded for all synthesised compounds
reported in this Letter.
a
Data recorded for the endo-adduct 11: colourless film; Rf = 0.67 (2% Et2O in
toluene); mmax (film/cmꢀ1) 3048, 2951, 2926, 2856, 1700, 1599, 1475, 1275,
736; dH (400 MHz, CDCl3) 7.53–7.51 (2H, m, 2 ꢁ ArH), 7.45 (1H, dd, J 8.0 and
7.5, ArH), 7.39–7.35 (2H, m, 2 ꢁ ArH), 7.31–7.27 (1H, m, ArH), 6.97 (1H, dd, J 7.5
and 0.6, ArH), 6.81 (1H, d, J 8.1, ArH), 6.40 (1H, dd, J 5.5 and 3.0, CH@CH), 6.07
(1H, dd, J 5.5 and 3.0, CH@CH), 5.22 (2H, s, PhCH2O), 3.29 (1H, d, J 17.0, CHH),
3.16 (1H, d, J 17.0, CHH), 3.02–3.01 (1H, m, CH), 2.60 (1H, dd, J 2.5 and 1.5, CH),
1.75 (2H, m, CH2), 1.60–1.58 (1H, m, CHH), 1.55–1.52 (1H, m, CHH); dC
(100 MHz, CDCl3) 205.7 (s), 156.8 (s), 154.7 (s), 137.9 (d), 136.6 (s), 135.6 (d),
133.0 (d), 128.6 (d), 127.6 (d), 126.7 (d), 125.6 (s), 118.2 (d), 110.8 (d), 70.0 (t),
55.5 (s), 54.7 (d), 50.2 (t), 44.1 (t), 43.6 (d), 40.0 (t); m/z (ES) 339.1343 (M++Na,
100%, C22H20O2Na requires 339.1361).
Data recorded for the exo-adduct 12: colourless solid; mp 91–92 °C (EtOAc);
Rf = 0.77 (2% Et2O in toluene); mmax (KBr/cmꢀ1) 3067, 2954, 2930, 1701, 1590,
1498, 1298, 1030, 733; dH (500 MHz, CDCl3) 7.54–7.52 (2H, m, ArH), 7.43 (1H,
dd, J 8.1 and 7.6, ArH), 7.40–7.37 (2H, m, 2 ꢁ ArH), 7.31–7.27 (1H, m, ArH), 6.92
(1H, dd, J 7.5 and 0.7, ArH), 6.79 (1H, d, J 8.1, ArH), 6.42 (1H, dd, J 5.6 and 3.0,
CH@CH), 6.23 (1H, dd, J 5.6 and 3.0, CH@CH), 5.27 (2H, s, PhCH2O), 3.02 (1H, d, J
17.5, CHH), 3.00–2.98 (1H, m, CH), 2.79–2.78 (1H, m, CH), 2.78 (1H, d, J 17.5,
CHH), 2.40 (1H, br d, J 8.6, CHH), 2.34 (1H, dd, J 11.5 and 3.6, CHCHHCH), 1.37
a