Journal of the American Chemical Society
COMMUNICATION
and Ag85c were incubated under identical conditions with 19.
Detailed analysis by MS revealed essentially complete protein
modification of Ag85c at Ser124 (Figure 4c and SI), while
no detectable modification or inhibition of either SBL or CalB
was observed.
(4) Belisle, J. T.; Vissa, V. D.; Sievert, T.; Takayama, K.; Brennan,
P. J.; Besra, G. S. Science 1997, 276, 1420–1422.
(5) Kilburn, J. O.; Takayama, K.; Armstrong, E. L. Biochem. Biophys.
Res. Commun. 1982, 108, 132–139.
(6) Sathyamoorthy, N.; Takayama, K. J. Biol. Chem. 1987, 262, 13417–
13423.
MS has provided an accurate and automated method to
determine the full kinetic parameters of Ag85c, which revealed
that the enzyme displays a combination of acyltransferase and
acylhydrolase activities. Substrate profiling revealed that,
although the Ag85 enzymes show promiscuity for trehalose-
based substrates,8 selectivity for differing monosaccharides and
anomeric configurations is marked: gluco- and arabinofurano-
sides are preferred over galacto-, manno-, or xylopyranosides.
These data provide additional evidence that Ag85 is responsible
for both trehaloseꢀmycolate scrambling and mycolylation of the
mycobacterial arabinogalactan. They also suggest that regions
distal to the active sites influence activity of the three isoforms.
The screen data indicate that disaccharides are better substrates
than the constituent monosaccharides, which suggests an ex-
tended active site. This in turn suggests that the optimal starting
point for rational drug design may be the trehalose scaffold that
was used here to design a tailored fluorophosphonate 19. This
compound was a potent and highly selective covalent inhibitor
probe of Ag85c that shows no reactivity toward other serine
acyltransferases. The selectivity of this molecule may allow
interrogation of the importance of Ag85 activity in vitro or in
infected macrophages. We anticipate that this and related
‘tagged’ compounds may find use as activity-based probes33 of
Ag85 function and might serve as a starting point for the design of
novel anti-mycobacterial drugs.
(7) Chatterjee, D. Curr. Opin. Chem. Biol. 1997, 1, 579–588.
(8) Backus, K. M.; Boshoff, H. I.; Barry, C. S.; Boutureira, O.; Patel,
M. K.; D’Hooge, F.; Lee, S. S.; Via, L. E.; Tahlan, K.; Barry, C. E., III;
Davis, B. G. Nat. Chem. Biol. 2011, 7, 228.
(9) Jackson, M.; Raynaud, C.; Laneelle, M. A.; Guilhot, C.; Laurent-
Winter, C.; Ensergueix, D.; Gicquel, B.; Daffe, M. Mol. Microbiol. 1999,
31, 1573–1587.
(10) Flint, J.; Taylor, E.; Yang, M.; Bolam, D. N.; Tailford, L. E.;
Martinez-Fleites, C.; Dodson, E. J.; Davis, B. G.; Gilbert, H. J.; Davies,
G. J. Nat. Struct. Mol. Biol. 2005, 12, 608–614.
(11) Yang, M.; Brazier, M.; Edwards, R.; Davis, B. G. ChemBioChem
2005, 6, 346–357.
(12) Yang, M.; Davies, G. J.; Davis, B. G. Angew. Chem., Int. Ed. 2007,
46, 3885–3888.
(13) Yang, M.; Proctor, M. R.; Bolam, D. N.; Errey, J. C.; Field, R. A.;
Gilbert, H. J.; Davis, B. G. J. Am. Chem. Soc. 2005, 127, 9336–9337.
(14) See SI for derivation.
(15) See SI for details of double reciprocal analysis of Ag85c.
(16) Cook, P. F.; Cleland, W. W. Enzyme Kinetics and Mechanism;
Garland Science: London; Abingdon, 2007.
(17) Anderson, D. H.; Harth, G.; Horwitz, M. A.; Eisenberg, D. J. Mol.
Biol. 2001, 307, 671–681.
(18) Ronning, D. R.; Klabunde, T.; Besra, G. S.; Vissa, V. D.; Belisle,
J. T.; Sacchettini, J. C. Nat. Struct. Biol. 2000, 7, 141–146.
(19) Boucau, J.; Sanki, A. K.; Voss, B. J.; Sucheck, S. J.; Ronning,
D. R. Anal. Biochem. 2009, 385, 120–127.
(20) Cook, P. F.; Tai, C. H.; Hwang, C. C.; Woehl, E. U.; Dunn,
M. F.; Schnackerz, K. D. J. Biol. Chem. 1996, 271, 25842–25849.
(21) Brown, A. J.; Snyder, F. J. Biol. Chem. 1982, 257, 8835–8839.
(22) Casals, C.; Acebal, C.; Arche, R. Int. J. Biochem. 1984,
16, 773–778.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental methods and
b
(23) The divergent deacylation pathways may also be related to the
nature/identity of the fatty acyl chain.
supporting figures. This material is available free of charge via
(24) νtransfer =(νTMH ꢀ νhydrolysis)/2
(25) Kalscheuer, R.; Syson, K.; Veeraraghavan, U.; Weinrick, B.;
Biermann, K. E.; Liu, Z.; Sacchettini, J. C.; Besra, G.; Bornemann, S.;
Jacobs, W. R. Nat. Chem. Biol. 2010, 6, 376–384.
(26) The PyMOL Molecular Graphics System, Version 0.99rc6:
’ AUTHOR INFORMATION
Corresponding Author
cbarry@niaid.nih.gov; Ben.Davis@chem.ox.ac.uk
(27) Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455–461.
(28) Bachovchin, D. A.; Ji, T. Y.; Li, W. W.; Simon, G. M.; Blankman,
J. L.; Adibekian, A.; Hoover, H.; Niessen, S.; Cravatt, B. F. Proc. Natl
Acad. Sci. U.S.A. 2010, 107, 20941–20946.
’ ACKNOWLEDGMENT
(29) See SI for details.
(30) McCarter, J. D.; Withers, S. G. J. Am. Chem. Soc. 1996, 118,
241–242.
(31) Diisopropylfluorophosphonate and soman have kobs/Ki values
of 140 and 9200 minꢀ1 mMꢀ1, respectively, against human acetylcho-
line esterase.
(32) Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Biochem.
Pharmacol. 2004, 68, 2237–2248.
This work was funded by the Intramural Research Program of
the National Institutes of Health, National Institute of Allergy
and Infectious Disease (C.E.B.), the Rhodes Trust (K.M.B.), the
Biotechnology and Biological Sciences Research Council (C.S.B.),
and the Bill and Melinda Gates Foundation through the TB Drug
Accelerator Program (C.E.B, B.G.D.). B.G.D. is a Royal Society
Wolfson Research Merit Award recipient. We thank Colorado
State “TB Vaccine Testing and Research Materials” contract for
providing Antigen 85 plasmids.
(33) Evans, M. J.; Cravatt, B. F. Chem. Rev. 2006, 106, 3279–3301.
’ REFERENCES
(1) Brennan, P. J.; Nikaido, H. Annu. Rev. Biochem. 1995, 64, 29–63.
(2) Draper, P.; Daffe, M. In Tuberculosis and the Tubercle Bacillus;
ASM Press: Washington DC, 2005.
(3) Mills, J. A.; Motichka, K.; Jucker, M.; Wu, H. P.; Uhlik, B. C.;
Stern, R. J.; Scherman, M. S.; Vissa, V. D.; Pan, F.; Kundu, M.; Ma, Y. F.;
McNeil, M. J. Biol. Chem. 2004, 279, 43540–43546.
13235
dx.doi.org/10.1021/ja204249p |J. Am. Chem. Soc. 2011, 133, 13232–13235