S.-W. Chen et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5063–5066
5065
F
R
Br
O
O
N
O
O
HN
n
N
H
F
O
O
O
R
O
O
O
N
O
O
H2N
n
+
N
H
O
O
O
O
MeO
OMe
MeO
OMe
OH
OH
8
9a~i
7a~i
Scheme 2. Synthesis of compounds 9a–i (R and n, see the Table 1).
J3,4 P 10.0Hz because of H-3 is trans to H-4.26,27 The
relative stereochemistry at C-4 position was also demon-
strated by the observation of NOE between H-3 and
Acknowledgements
This work was financially supported by NSFGS
(ZGS033-A43-013) and NSFC (No. 20021001); We also
thank National Center for Drug Screening of China for
help in performing the anticancer activity in vitro.
1
H-4. While H-3 was irradiated in H NMR spectrum,
the H-4 was enhanced 4–5%, however, H-2 was not en-
hanced. Thus we ensured that H-3 is cis to H-4 and H-2
is trans to H-3.
Cytotoxicities of all the target compounds against two
tumor cell lines HL-60 and A-549 were tested in vitro
following procedure of the methods described by Ber-
geron.28 The results of these assays were used to obtain
the corresponding inhibition rates, from which IC50
(lM) values were calculated. As shown in Table 1, com-
pounds 9a–i are more active than both VP-16 and 5-FU.
Compound 9g is the most potent against HL-60 and
A-549 cells.
References and notes
1. Imbert, T. Biochimie 1998, 80, 207.
2. Canel, C.; Moreas, R. M.; Dayan, F. E.; Ferreira, D.
Phytochemistry 2000, 54, 115.
3. Gordaliza, M.; Castro, M. A.; Miguel del Corral, J. M.;
San Feliciano, A. Curr. Pharmaceut. Des. 2000, 6, 1811.
4. VanVliet, D. S.; Tachibana, Y.; Bastow, K. F.; Huang,
E.-S.Lee, K.-H. J. Med. Chem. 2001, 44, 1422.
5. Schacter, L. Semin. Oncol. 1996, 23, 1.
6. Pagani, O.; Zucchetti, M.; Sessa, C.; De Fusco, M.;
Kaeser-Frohlich, A.; Hanauske, A.; Cavalli, F. Cancer
Chemother. Pharmacol. 1996, 38, 541.
In conclusion, the strategy to synthesize novel deriva-
tives of podophyllotoxin through combination of
antimetabolite 5-FU and TOP-II inhibitor 40-
demethylepipodophyllotoxin with L-amino acid may be
successful. The target compounds 9a–i showed more
effective cytotoxic activity than both VP-16 and 5-FU.
The IC50 values of compounds 9a–i againstHL-60 and
A-549 were less than those of VP-16 and 5-FU. Among
them, Compound 9g was the most potent cytotoxic
7. Gordaliza, M.; Castro, M. A.; Miguel del Corral, J. M.;
´
´
´
´
´
Lopez-Vazquez, M. L.; Garcıa, P. A.; Garcıa-Gravalos,
M. D.; San Feliciano, A. Eur. J. Med. Chem. 2000, 35,
691.
8. Castro, M. A.; Miguel del Corral, J. M.; Gordaliza, M.;
´
´
´
Garcıa, P. A.; Gomez-Zurita, M. A.; Garcıa-Gravalos, M.
D.; de la Iglesia-Vicente, J.; Gajate, C.; An, F.; Mollinedo,
F.; San Feliciano, A. J. Med. Chem. 2004, 47, 1214.
9. Ayres, D. C.; Loike, J. D. Lignans: Chemical, Biological
and Clinical Properties; Cambridge University Press:
London, 1990; p 85.
agentwiht IC
values 0.04lM againstHL-60 and less
50
than 0.01lM against A-549, respectively. Further inves-
tigation of this series of compounds is underway.
10. Shah, J. C.; Chen, J. R.; Chow, D. Pharm. Res. 1989, 6,
408.
11. Stahelin, H. F.; Von Wartburg, A. Cancer Res. 1991, 51, 5.
12. Heidelberger, C.; Ansfield, F. J. Cancer Res. 1963, 23,
1226.
Table 1. Cytotoxic activity of 9a–i in vitro (IC50, lM)
Compd
n
R
HL-60a
A-549b
13. Lokich, J. J.; Ahlgren, J. D.; Gullo, J. J.; Philips, J. A.;
Fryer, J. B. J. Clin. Oncol. 1989, 7, 425.
14. Peters, G. J.; Van der Wilt, C. L.; Van Moorsel, C. J. A.;
Kroep, J. R.; Bergman, A. M.; Ackland, S. P. Pharmacol.
Ther. 2000, 87, 227.
15. Cho, S. J.; Tropsha, A.; Suffness, M.; Cheng, Y. C.; Lee,
K. H. J. Med. Chem. 1996, 39, 1383.
16. Zhu, X. K.; Guan, J.; Tachibana, Y.; Bastow, K. F.; Cho,
S. J.; Cheng, H. H.; Cheng, Y. C.; Gurwith, M.; Lee, K.
H. J. Med. Chem. 1999, 42, 2441.
9a
9b
3
3
3
4
4
4
5
5
5
CH2Ph
0.31
0.24
0.99
0.42
0.53
0.05
0.04
0.30
0.04
2.75
65.3
0.48
0.18
0.29
0.30
0.74
1.87
<0.01
0.53
0.23
7.38
50.5
CH(Me)CH2Me
CH2SMe
CH2Ph
9c
9d
9e
CH(Me)CH2Me
CH2SMe
CH2Ph
9f
9g
9h
9i
CH(Me)CH2Me
CH2SMe
VP-16
5-FU
17. Zhu, X. K.; Guan, J.; Xiao, Z.; Cosentino, L. M.; Lee, K.
H. Bioorg. Med. Chem. 2002, 12, 4267.
18. Xu, H.; Zhang, X.; Tian, X.; Lu, M.; Wang, Y. G. Chem.
Pharm. Bull. 2002, 50, 399.
a MTT methods, drug exposure was for 48h.
b SRB methods, drug exposure was for 72h.