3.3; N, 9.3%. 1H NMR (CD2Cl2, 295 K): d = 7.53 (s, [2H]), 7.64 (s,
(c) I. Warf and M. Onyszchuk, Can. J. Chem., 1970, 48, 2250; (d) B.
Neumueller and K. Dehnicke, Z. Anorg. Allg. Chem., 2008, 634, 2567.
9 D. Babel and A. Tressaud in Inorganic Solid Fluorides, P. Hagenmuller
(Ed) Academic Press NY, 1985, Chapter 3.
1
[H]), 8.36 (s, [2H]); (180 K): 7.34 (br, [3H]), 8.17 (br, [2H]). 19F{ H}
NMR (CD2Cl2, 295 K): no resonance; (180 K): d = -133.6 (s),
-136.7 (t,2JFF = 13 Hz), -140.9 (t, 2JFF = 13 Hz). IR (Nujol): n =
862 (sh), 840 (s), 814 (s) (SiF) cm-1.
10 M. F. Davis, W. Levason, G. Reid and M. Webster, Polyhedron, 2006,
25, 930.
11 M. F. Davis, M. Clarke, W. Levason, G. Reid and M. Webster,
Eur. J. Inorg. Chem., 2006, 2773.
[SiF4(DMSO)2]. [SiF4(DMSO)2] was prepared similarly to the
phosphine oxide adducts. White powder. Yield 93%. Required for
C4H12F4O2S2Si·CH2Cl2: C, 17.4; H, 4.1. Found: C, 17.4; H, 4.5%.
12 F. Cheng, M. F. Davis, A. L. Hector, W. Levason, G. Reid, M. Webster
and W. Zhang, Eur. J. Inorg. Chem., 2007, 2488.
13 F. Cheng, M. F. Davis, A. L. Hector, W. Levason, G. Reid, M. Webster
and W. Zhang, Eur. J. Inorg. Chem., 2007, 4897.
14 M. F. Davis, W. Levason, G. Reid, M. Webster and W. Zhang, Dalton
Trans., 2008, 533.
15 M. F. Davis, W. Levason, G. Reid and M. Webster, Dalton Trans., 2008,
2261.
1
1H NMR (CD2Cl2, 295 K): d = 2.66 (s); (180 K): 2.66 (s). 19F{ H}
NMR (CD2Cl2, 295 K): no resonance; (200 K): d = -123.0 (s);
(180 K): -122.8 (s), -123.0 (s), -135.9 (s). IR (Nujol): n = 1018 (s,
br), (SO), 801 (vs) (SiF) cm-1.
16 (a) A. D. Adley, P. H. Bird, A. R. Frazer and M. Onyszchuk, Inorg.
Chem., 1972, 11, 1402; (b) T. Q. Nguyen, F. Qu, X. Huang and A. F.
Janzen, Can. J. Chem., 1992, 70, 2089; (c) V. A. Bain, R. C. G. Killean
and M. Webster, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.
Chem., 1969, 25, 156; (d) A. N. Cheklov, V. V. Tkachev and S. A.
Lermontov, Zh. Strukt. Khim., 2003, 44, 1165; (e) V. O. Gel’mbol’dt,
V. Koroeva and A. A. Ennan, Russ. J. Coord. Chem., 2007, 33, 160;
(f) N. W. Mitzel, K. Vojinovic, T. Foerster, H. E. Robertson, K. B.
Borisenko and D. W. H. Rankin, Chem.–Eur. J., 2005, 11, 5114.
17 F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W.
Zhang, Chem. Commun., 2009, 1334.
X-Ray crystallography. Details of the crystallographic data
collection and refinement parameters are given in Table 6. Crystals
suitable for single crystal X-ray analysis were obtained as described
above. Data collections used a Bruker-Nonius Kappa CCD
˚
diffractometer fitted with Mo Ka radiation (l = 0.71073 A)
and either a graphite monochromator or confocal mirrors, with
the crystals held at 120 K in a nitrogen gas stream. Structure
solution and refinement were straightforward,47–49 with a few
points of interest described below; H atoms bonded to C were
introduced into the models in idealised positions using the default
C–H distance. The Z = 3 arose for [SiF4(OPPh3)2] from one
centrosymmetric molecule and one general molecule in space
18 (a) R. S. Ghadwal, S. S. Sen, H. W. Roesky, G. Tavcar, S. Merkel and
D. Stalke, Organometallics, 2009, 28, 6374; (b) O. Holloczki and L.
Nyulaszi, Organometallics, 2009, 28, 4159.
19 (a) J. P. Guertin and M. Onyszchuk, Can. J. Chem., 1968, 46, 988; (b) V.
Gutmann and K. Utvary, Monatsh. Chem., 1959, 90, 706; (c) K. Isslieb
and H. Reinhold, Z. Anorg. Allg. Chem., 1962, 314, 113; (d) D. Kummer
and T. Seshadri, Z. Anorg. Allg. Chem., 1976, 425, 236; (e) D. Kummer
and T. Seshadri, Z. Anorg. Allg. Chem., 1977, 432, 153.
20 I. R. Beattie and M. Webster, J. Chem. Soc., 1965, 3672.
21 (a) A. Simonov, E. V. Ganin, A. A. Dvorkin, M. S. Fonari, V. O.
Geimboldt and A. A. Ennan, Supramol. Chem., 1994, 3, 185; (b) E. V.
Ganin, Russ. J. Gen. Chem., 1998, 68, 958.
22 I. R. Beattie and G. A. Ozin, J. Chem. Soc. (A), 1970, 370; I. R. Beattie
and G. A. Ozin, J. Chem. Soc. (A), 1969, 2267.
23 (a) A. L. Speck, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,
1987, 43, 1233; (b) L. M. Engelhardt, C. L. Raston, C. R. Whitaker
and A. H. White, Aust. J. Chem., 1986, 39, 2151.
¯
group P1. The two distinct molecules had very similar bond
lengths. The H atoms bonded to O in [Me3AsOH]2[SiF6] were
clearly identified in a late difference electron-density map as the
two highest peaks. They showed sensible O–H and As–O–H
parameters, together with plausible O–H ◊ ◊ ◊ F H-bonds and were
introduced into the model with refined coordinates and a DFIX
restraint on the O–H distance. The structure of [SiF4(pyNO)2]
proved curiously intractable. The systematic absences pointed to
the space group P21/c, but attempts with several packages to find
a solution failed. However, a solution in Pc readily emerged (with
two molecules in the asymmetric unit) with R1 = 0.06, suggesting
possible pseudo-symmetry. However, the vector set of the four Si
atoms in the Pc solution was consistent with the vectors of P21/c,
and introducing the calculated Si atom position into a structure-
factor/electron-density calculation readily yielded the solution in
this space group.
24 R. S. Edmondson in The Chemistry of Organophosphorus Compounds,
Ed F. R. Hartley, Wiley NY 1992 Vol 2 Chapter 7 and refs therein.
25 H. H. Karsch, Z. Naturforsch. Teil B, 1979, 34, 31.
26 K. Kleboth, Monatsh. Chem., 1970, 101, 357.
27 M. H. O’Brien, G. O. Doak and G. G. Long, Inorg. Chim. Acta, 1967,
1, 34.
28 A. Augustine, G. Ferguson and F. C. March, Can. J. Chem., 1975, 53,
1647.
29 I. Ruppert and V. Bastian, Angew. Chem., Int. Ed. Engl., 1978, 17,
214.
30 A. M. Forster and A. J. Downs, Polyhedron, 1985, 4, 1625.
31 B. O. Patrick, Hongsui Sun, M. W. Fricke and W. R. Cullen, Appl.
Organomet. Chem., 2005, 19, 384.
32 M. Jura, W. Levason, E. Petts, G. Reid, M. Webster and W. Zhang,
Dalton Trans., 2010, 39, 10264.
Acknowledgements
We thank EPSRC for support (EP/H007369/1, EP/C006763/1).
33 M. F. Davis, W. Levason, J. Paterson, G. Reid and M. Webster,
Eur. J. Inorg. Chem., 2008, 802.
34 C. Glidewell, G. S. Harris, H. D. Holden, D. C. Liles and J. S.
McKechnie, J. Fluorine Chem., 1981, 18, 143.
References
1 The Chemistry of Organic Silicon Compounds, Eds Z. Rappoport and
S. Patai, Wiley, Vols 1–3, Wiley NY 1991, 2001.
2 R. R. Holmes, Chem. Rev., 1996, 96, 927.
3 C. Chuit, R. J. P. Corriu, C. Reye and J. C. Young, Chem. Rev., 1993,
93, 1371.
4 F. A. Cotton, G. Wilkinson, M. Bochmann and C. A. Murillo, Advanced
Inorganic Chemistry, Wiley NY 1998, 6th Ed.
5 M. Bork and R. Hoppe, Z. Anorg. Allg. Chem., 1996, 622, 1557.
6 M. Atoji and W. N. Libscomb, Acta Crystallogr., 1954, 7, 597.
7 J. Koehler, A. Simon and R. Hoppe, J. Less Common Met., 1988, 137,
333.
8 (a) T. E. Mallouk, B. Desbat and N. Bartlett, Inorg. Chem., 1984, 23,
3160; (b) F. Klanberg and E. L. Muetterties, Inorg. Chem., 1968, 7, 155;
35 M. G. Voronkov, E. V. Boyarkina, G. A. Gavrilova and S. V. Basenko,
Z. Osch. Khim., 2001, 71, 1970.
36 S. Stefan, F. Belaj, T. Madl and R. Pietschnig, Eur. J. Inorg. Chem.,
2010, 289.
37 S. V. Basenko, I. A. Gebel, M. G. Voronkov, L. V. Klyba and R. G.
Mirskov, Z. Obsch. Khim., 1998, 68, 341.
38 A. V. Yatsenko, S. V. Medvedev and L. A. Aslanov, Koord. Khim., 1991,
17, 1338; M. G. Voronkov, G. A. Gavrilova and S. V. Basenko, Z. Obsch.
Khim., 2001, 71, 237.
39 H. Fleischer, Eur. J. Inorg. Chem., 2001, 393.
40 E. I. Davydova, A. Y. Timoshkin, T. N. Sevastianova, A. V. Suvorov
and G. Frenking, J. Mol. Struct. Theochem., 2006, 767, 103.
1592 | Dalton Trans., 2011, 40, 1584–1593
This journal is
The Royal Society of Chemistry 2011
©