I. Šagud et al, Photoisomerization and Photocyclization o f 5-Styryloxazole
333
2. J. Saitiel and Y.-P. Sun, in H. Durr, H. Bouas-Laurent (Eds.)
Photochromism: Molecules and Systems, Elsevier, Amsterdam,
1990, pp. 64—162, and references therein.
3. G. Bartocci, U. Mazzucato, and A. Spalletti, Trends Phys. Chem.
12 (2007) 1-36.
CONCLUSIONS
The study of 5-StOx and p-OMe-5-StOx under mild
conditions showed a photobehaviour similar to that of
stilbene, at least regarding the deactivation of the E
isomer. Taken together, the yields of the abundant
isomerisation and relatively weak fluorescence account
for all the quanta absorbed. Both yields are slightly
lower for the p-OMe-derivative where a weak contribu-
tion of internal conversion cannot be excluded. The
situation is different for the Z isomer since the two
competitive photoreactions (back isomerization to E and
cyclization) are characterized by lower yields compared
to stilbene, particularly for the unsubstituted compound
where the cyclization yield decreases by almost an order
of magnitude with respect to stilbene. This effect could
be due to the reduced electron density (with respect to
the analogous five-membered rings with only one het-
eroatom, F and Py), caused by the presence of the basic
N heteroatom, at the reaction center, namely on the
carbon atom implied in the ring closing reaction. A
general quantitative study of the photobehaviour of
these stilbene analogues bearing different five-
membered heteroaryl groups would be necessary to
better understand the structure effect on the relaxation
properties and the possible interest for applications. We
plan to extend this research line on structurally-
modified analogous compounds where the presence of
pentatomic heteroaryl group will probably induce larger
effects. The continuation of this work in different direc-
tions has the aim of investigating the effects of: i) posi-
tional isomers bearing the styryl group in different posi-
tions (2- and 4-StOx); ii) fused-ring bicyclic benzologs
(styrylbenzoxazoles), and iii) diarylethenes containing
two heteroaryl groups with the same (symmetric) or
different (asymmetric) electron donor/acceptor proper-
ties. The latter are expected to be of specific interest
since the occurring of intramolecular CT processes in
the excited state should strongly affect the radiative and
reactive relaxation leading to properties of potential
application.
4. K. A. Muszkat, Top. Curr. Chem. 88 (1980) 91-143 and refer-
ences cited therein.
5. F. B. Mallory and C. W. Mallory, in Organic Reactions, John
Wiley and Sons: New York, 1984, Vol. 30, pp 1—456.
6. W. H. Laarhoven, in H. Durr, H. Bouas-Laurent (Eds.), Photo-
chromism, Molecules and Systems, Elsevier, Amsterdam, 1990,
chapter 7, pp. 270-313 and references therein.
7. K. A. Muszkat and E. Fischer, J. Chem. Soc. B (1967) 662-678
and references therein.
8. T. Wismontski-Knittel, G. Fischer, and E. Fischer, J. Chem. Soc.
Perkin Trans. 7/(1974) 1930-1940.
9. FI. Petek, K. Yoshihara, Y. Fujiwara, Z. Lin, J. H. Penn, and J. H.
Frederick, J. Phys. Chem. 94 (1990) 7539-7543 and references
cited therein.
10. J. B. M. Somers, A. Couture, A. Lablache-Combier, and W. H.
Laarhoven, J. Am. Chem. Soc. 107 (1985) 1387-1394 and refer-
ences therein.
11. C. E. Loader and C. J. Timmons, J. Chem. Soc. (C) (1967) 1677—
1681.
12. W. Carruthers and H. N. M. Stewart, J. Chem. Soc. (1965) 6221—
6227.
13. V. H. Rawai, R. J. Jones, and M. P. Cava, Tetrahedron Lett. 26
(1985) 2423-2426 and references therein.
14. F. D. Lewis, T. L. Kurth, R. S. Kalgutkar, and J.-S. Yang, J. Am.
Chem. Soc. 123 (2001) 3878-3884.
15. T.-I. Ho, J.-Y. Wu, and S.-L. Wang, Angew. Chem. Int. Ed. 38
(1999)2558-2560.
16. J.-Y. Wu, J.-H. Ho, S.-M. Shih, T.-L. Hsieh, and T.-I. Ho, Org. Lett.
1 (1999) 1039-1041.
17. J.-H. Ho and T.-I. Ho, Tetrahedron Lett. 44 (2003) 4669^1672.
18. S. Samori, M. Hara, T.-I. Ho, S. Tojo, K. Kawai, M. Endo, M.
Fujitsuka, and T. Majima, J. Org. Chem. 70 (2005) 2708-2712.
19. K. Song, L.-Z. Wu, C.-H. Yang, and C.-H. Tung, Tetrahedron
Lett. 41 (2000) 1951-1954.
20. B. Antelo, L. Castedo, J. Delamano, A. Gomez, C. Lopez, and G.
Toyo, J. Org. Chem. 61 (1996) 1188-1189.
21. M. K. Awad, M. M. El-Hendawy, T. A. Fared, S. E. H. Etaiw,
and N. J. English, Photochem. Photobiol. Sci. 12 (2013) 1220-
1231.
22. I. Šagud, F. Faraguna, Ž. Marinić, and M. Šindler-Kulyk, J. Org.
Chem. 76 (2011) 2904-2908.
23. G. Bartocci, F. Masetti, U. Mazzucato, A. Spalletti, I. Baraldi
and F. Momicchioli, J. Phys. Chem. 91 (1987) 4733-4743.
24. M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook
ofPhotochemistry, 3. Ed., CRC Press, 2006, pp. 500-501.
25. U. Mazzucato and F. Momicchioli, Chem. Rev. 91 (1991) 1679—
1719.
26. G. Bartocci, A. Spalletti, and U. Mazzucato, in Waluk, J. (Ed.),
Conformational Analysis of Molecules in Excited States, Wiley-
VCH, New York, 2000, eh. 5 and references therein.
27. U. Mazzucato and A. Spalletti, J. Phys. Chem. A 113 (2009)
14521-14529 and references therein.
Acknowledgements. The authors recognize the financial sup-
port by MIUR (Ministero dell’Universita e della Ricerca,
Rome, Italy) and the University of Perugia (PRIN 2010-2011
n. 2010FM738P) as well as the Ministry of Science, Education
and Sports of the Republic of Croatia (grant nos. 125-
0982933-2926). The authors thank also Mr. D. Pannacci for
his technical assistance in HPLC measurements.
28. L. L. Costanzo, S. Pistara, G. Condorelli, and G. Scarlata,
J. Photochem. 7 (1977) 297-304.
29. P. Gajdek, R. S. Becker, F. Elisei, U. Mazzucato, and A. Spalletti,
J. Photochem. Photobiol. A: Chem. 100 (1996) 57-64.
30. G. Galiazzo, G. Gennari, and P. Bortolus, Gazz. Chim. It. 121
(1991)67-71.
REFERENCES
1. D. H. Waldeck, Chem. Rev. 91 (1991) 415-436 and references
therein.
Croat. Chem. Acta 87 (2014) 327.