all calculations. The final wR2 = 0.1506 (all data). Flack w = ꢀ0.11(7).
CCDC 785673 (3aa).
1 (a) J. Pietruszka, Chem. Rev., 2003, 103, 1051; (b) L. A.
Wessjohann, W. Brandt and T. Thiemann, Chem. Rev., 2003,
103, 1625; (c) J. E. Baldwin and D. W. Parker, Chem. Rev., 2003,
103, 11974.
2 Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry
Toward Heterocycles and Natural Products, ed. L. M. Harwood,
R. J. Vickers, A. Padwa and W. Pearson, Wiley & Sons, New York,
2002.
3 (a) S.-Y. Kim, H. B. Park, J.-H. Cho, K. H. Yoo and C.-H. Oh,
Bioorg. Med. Chem. Lett., 2009, 19, 2558; (b) H. B. Park, N. H. Jo,
J. H. Hong, J. H. Chei, J.-H. Cho, K. H. Yoo and C.-H. Oh, Arch.
Pharm. Chem. Life Sci., 2007, 340, 530; (c) G. Cianchetta,
R. Mannhold, G. Cruciani, M. Baroni and V. Cecchetti, J. Med.
Chem., 2004, 47, 3139; (d) N. Jiraskova, Curr. Opin. Invest. Drugs,
2000, 1, 31; (e) T. Yoshida, Y. Yamamoto, H. Orita, M. Kakiuchi
and H. Kato, Chem. Pharm. Bull., 1996, 44, 1376; (f) Y. Takahashi,
N. Masuda, M. Otsuki, M. Miki and T. Nishino, Antimicrob.
Agents Chemother., 1997, 41, 1326; (g) K. Youichi, A. Shohgo,
K. Katsuhiro, S. Kenichi and H. Isao, J. Med. Chem., 1994, 37,
3344.
Fig. 2 X-Ray structure of (4R,6S,7R)-3aa.
4 (a) C.-J. Wang, G. Liang, Z.-Y. Xue and F. Gao, J. Am. Chem.
Soc., 2008, 130, 17250; (b) C.-J. Wang, Z.-Y. Xue, G. Liang and
Z. Lu, Chem. Commun., 2009, 2905; (c) G. Liang, M.-C. Tong and
C.-J. Wang, Adv. Synth. Catal., 2009, 351, 3101; (d) Z.-Y. Xue,
T.-L. Liu, Z. Lu, H. Huang, H.-Y. Tao and C.-J. Wang, Chem.
Commun., 2010, 46, 1727.
5 For excellent reviews about 1,3-dipolar cycloaddition reactions of
azomethine ylides, see: (a) L. M. Stanley and M. P. Sibi, Chem.
Rev., 2008, 108, 2887; (b) G. Pandey, P. Banerjee and S. R. Gadre,
Chem. Rev., 2006, 106, 4484.
6 (a) J. Salaun and J. Marguerite, Org. Synth., Coll. Vol. 7, 131;
J. Salaun and J. Marguerite, Org. Synth., Coll. Vol. 63, 147;
(b) T. Thiemann, D. Ohira, Y. Q. Li, T. Sawada, S. Mataka,
K. Rauch, M. Noltemeyer and A. de Meijere, J. Chem. Soc., Perkin
Trans. 1, 2000, 2968.
7 For achiral examples on the ring-untouched 1,3-dipolar
cycloaddition of alkylidenecyclopropanes with nitrone dipoles,
see: (a) F. M. Cordero, I. Barile, F. D. Sarlo and A. Brandi,
Tetrahedron Lett., 1999, 40, 6657; (b) F. M. Cordero, M. Salvati,
F. Pisaneschi and A. Brandi, Eur. J. Org. Chem., 2004, 2205;
(c) J. Revuelta, S. Cicchi and A. Brandi, J. Org. Chem., 2005, 70,
5636; (d) F. M. Cordero, F. Pisaneschi, M. Salvati, V. Paschetta,
Fig. 3 The results of 1,3-dipolar cycloaddition of imino esters derived
from a-substituted amino acids with ethyl cyclopropylidene acetate 1a.
To further expand the synthetic utility of this reaction for
construction of 5-aza-spiro[2,4]heptanes bearing a unique nitrogen-
substituted quaternary stereogenic center,13 azomethine ylide
derived from various a-substituted amino acids has also been
examined. The results are summarized in Fig. 3. Pleasingly,
high yield and excellent diastereo-/enantioselectivity were
uniformly observed for those imino esters derived from
(ꢂ)-alanine, (ꢂ)-2-aminobutyric acid and (ꢂ)-leucine under
the optimal reaction conditions.
J. Ollivier, J. Salaun and A. Brandi, J. Org. Chem., 2003, 68, 3271;
¨
In conclusion, we have developed a general solution for the
direct and facile synthesis of various optically active 5-aza-
spiro[2,4]heptane derivatives in high yield and excellent
diastereo-/enantioselective (95 : 5 to >98 : 2 dr, 93–98% ee) via
the Cu(I)/(S)-TF–BiphamPhos-catalyzed asymmetric 1,3-dipolar
cycloaddition reaction for the first time. Notably, this
methodology presented herein could open up new prospects for
selectively constructing highly functional 5-aza-spiro[2,4]heptanes,
a valuable structural motif for drug discovery. Further studies on
the reaction scope and its application are ongoing.
For achiral examples on the ring-untouched 1,3-dipolar
cycloaddition of alkylidenecyclopropanes with diazoalkane
dipoles, see: (e) I. P. Klimenko, E. V. Shulishov, Y. V. Tomilov
and O. M. Nefedov, Russ. Chem. Bull., 2003, 52, 659;
(f) A. P. Molchanov, V. V. Diev, J. Magull, D. Vidovic,
S. I. Kozhushkov, A. de Meijere and R. R. Kostikov, Eur. J.
Org. Chem., 2005, 593.
8 For excellent reviews, see: (a) M. Shi, L.-X. Shao, J.-M. Lu, Y. Wei,
K. Mizuno and H. Maeda, Chem. Rev., 2010, 110, 5883;
(b) H. Pellisier, Tetrahedron, 2010, 66, 8341; (c) A. Galano,
J. Alvarez-Idaboy and A. Vivier-Bunge, Theor. Chem. Acc., 2007,
118, 597; (d) A. Brandi, S. Cicchi, F. M. Cordero and A. Goti,
Chem. Rev., 2003, 103, 1213.
9 F. Pisaneschi, M. Piacenti, F. M. Cordero and A. Brandi,
Tetrahedron: Asymmetry, 2006, 17, 292.
10 J. T. Kuethe, D. L. Zhao, G. R. Humphrey, M. Journet and
A. E. McKeown, J. Org. Chem., 2006, 71, 2192.
11 J. R. Henderson, M. Parvez and B. A. Keay, Org. Lett., 2007, 9,
5167.
12 No cycloaddition was observed when alkyl substituted imino ester
was tested under the same reaction conditions.
This work was supported by National Natural Science
Foundation of China (20702039, 20972117), 973
(2011CB808600), SRFDP (20090141110042), and the
Fundamental Research Funds for the Central Universities.
Notes and references
z Crystal data for (4R,6S,7R)-3aa: C17H20ClNO4, Mr = 337.79,
13 (a) Quaternary Stereocenters: Challenges and Solution for Organic
Synthesis, ed. J. Christoffers and A. Baro, Wiley-VCH, Weinheim,
2005; (b) B. M. Trost and C. Jiang, Synthesis, 2006, 369.
T
= 298 K, monoclinic, space group P2(1), a = 9.479(2),
b = 27.837(6), c = 13.143(4) A, V = 3467.8(13) A3, Z = 8, 11 687
reflections measured, 7093 unique (Rint = 0.0514) which were used in
c
2618 Chem. Commun., 2011, 47, 2616–2618
This journal is The Royal Society of Chemistry 2011