Journal of the American Chemical Society
ARTICLE
Hoshino, T.; Sato, T. Chem. Commun. 2002, 291–301. (e) Wendt, W. K.;
Schultz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000,
39, 2812–2833.
(17) A more comprehensive account of catalyst optimization studies
is included in the Supporting Information.
(35) Examples of complexation-induced downfield shifts of guani-
dinium ion protons in the presence of anionic guests: (a) Echavarren,
A.; Galan, A.; Lehn, J.-M.; de Mendoza, J. J. Am. Chem. Soc. 1989,
111, 4994–4995. (b) Dixon, R. P.; Geib, S. J.; Hamilton, A. D. J. Am.
Chem. Soc. 1992, 114, 365–366.
(18) A review of non-linear effects in asymmetric synthesis:Kagan,
H. B. Adv. Synth. Catal. 2001, 343, 227–233.
(19) Plots of product 6 ee and conversion as a function of catalyst (R,
R)-2 ee for rearrangements conducted in both hexanes and CDCl3 are
included in the Supporting Information.
(20) A review of reaction progress kinetic analysis conducted under
synthetically relevant conditions:Blackmond, D. G. Angew. Chem., Int.
Ed. 2005, 44, 4302–4320.
(21) Examples of kinetic investigations of asymmetric reactions
catalyzed by organic small molecules: (a) Zuend, S. J.; Jacobsen, E. N.
J. Am. Chem. Soc. 2007, 129, 15872–15883. (b) Zuend, S. J.; Jacobsen,
E. N. J. Am. Chem. Soc. 2009, 131, 15358–15374. (c) Zotova, N.;
Franzke, A.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2007,
129, 15100–15101.
(36) Examples of similar complexation-induced upfield shifts for
aliphatic hydrogen atoms in proximity to arene π-faces in host-guest
complexes: (a) Kobayashi, K.; Asakawa, Y.; Kikuchi, Y.; Toi, H.; Aoyama,
Y. J. Am. Chem. Soc. 1993, 115, 2648–2654. (b) Ferrand, Y.; Crump, M. P.;
Davis, A. P. Science 2007, 218, 619–622. (c) Biros, S. M.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 12094–12095.
(37) Recent reviews (see also references therein): (a) Fielding, L.
Tetrahedron 2000, 56, 6151–6170. (b) Hirose, K. J. Inclusion Phenom.
Macrocyclic Chem. 2001, 39, 193–209.
(38) (a) Job, P. Ann. Chim. 1928, 9, 113–203. (b) MacCarthy, P.
Anal. Chem. 1978, 14, 2165.
(39) A plot of Δδ ꢀ mole fraction of 5 vs mole fraction of 5 reached
a maximum at 0.5 at a constant total concentration ([5] þ [(R,R)-2]) of
0.1 M. See Supporting Information for details.
(40) An average distance of 2.91 Å was measured for intermolecular
polar C-H to π interactions in a database study of organic crystal
structures:Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.;
Nishio, M. Tetrahedron 1999, 55, 10047–10056.
(22) Detailed procedures for data acquisition and processing are
included in the Supporting Information. 1H NMR signal integration was
used to generate [5] data as a function of time. Rate vs concentration
plots were obtained from fits of the concentration vs time data to high-
order polynomial functions using the least-squares method, followed by
differentiation of that function with respect to time. These data were
parsed at 5% conversion intervals for the purposes of plotting and
derivation of the rate law.
(23) Rate constants and activation parameters for the rearrange-
ments of various ester-substituted allyl vinyl ethers: Rehbein, J.; Leick, S.;
Hiersemann, M. J. Org. Chem. 2009, 74, 1531–1540.
(24) Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 9662–9663.
(25) Frisch, M. J.; et al. Gaussian 03, Revision E.01; Gaussian, Inc.:
Wallingford, CT, 2004.
(41) ΔΔE between the ground-state pro-(S,S) and pro-(R,R) con-
formations of the (R,R)-3 5 complex was calculated to be 2.57 kcal/mol.
3
(42) From crystallographic measurements, the van der Waals radius
of a hydrogen atom is estimated to be 1.09-1.20 Å: (a) Bondi, A. J. Phys.
Chem. 1964, 68, 441–451. (b) Rowland, R. S.; Taylor, R. J. Phys. Chem.
1996, 100, 7384–7391.
(43) Effect of arene substituents on the strength of cation-π
interactions: (a) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A. J. Am.
Chem. Soc. 1996, 118, 2307–2308. (b) Ma, J. C.; Dougherty, D. A. Chem.
Rev. 1997, 97, 1303–1324.
(26) (a) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am. Chem.
Soc. 1999, 121, 10865–10874. (b) Aviyente, V.; Yoo, H. Y.; Houk, K. N.
J. Org. Chem. 1997, 62, 6121–6128. (c) Guner, V.; Khuong, K. S.; Leach,
A. G.; Lee, P. S.; Bartberger, M. D.; Houk, K. N. J. Phys. Chem. A 2003,
107, 11445–11459.
(27) For computational studies of the thermal, aqueous, and thiour-
ea-catalyzed rearrangements of ester- and carboxylate-substituted allyl
vinyl ethers, see refs 10b, 15b, and the following: (a) Rehbein, J.;
Hiersemann, M. J. Org. Chem. 2009, 74, 4336–4342. (b) Cramer, C. J.;
Truhlar, D. G. J. Am. Chem. Soc. 1992, 114, 8794–8799.
(28) For consistency, s-trans is used here to describe an anti-
periplanar relationship between the vinyl ether and ester carbonyl
oxygen atoms about the intervening single bond, and s-cis describes a
syn-periplanar geometry.
(29) Zero-point vibrational energy corrections and free energies for
all stationary points are included in the Supporting Information.
(30) The energetic preference for R-ketoesters to adopt a dipole-
minimized, s-trans conformation, which precludes chelation of the
two carbonyl oxygen atoms by a catalyst, provides a possible rationale
for the general observation of catalytic turnover in both Lewis and
Brønsted acid-mediated Claisen rearrangements of O-allyl R-keto-
ester substrates.
(31) In ref 10b, an analogous shortening of an amidinium ion proton
to ether oxygen distance was observed in the transition state for the
Claisen rearrangement of a carboxylate-substituted substrate.
(32) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.
NBO, Version 3.1; Gaussian Inc.: Pittsburgh, PA, 1990.
(33) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990,
11, 361–373.
(44) Examples of the use of unnatural amino acids to resolve specific
cation-π interactions in protein-ligand complexes: (a) Zhong, W.;
Gallivan, J. P.; Yinong, Z.; Li, L.; Lester, H. A.; Dougherty, D. A. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 12088–12093. (b) Xiu, X.; Puskar, N. L.;
Shanata, J. A. P.; Lester, H. A.; Dougherty, D. A. Nature 2009,
458, 534–537.
(45) Studies of cation-π interactions in asymmetric catalysis: (a)
Cannizzaro, C. E.; Houk, K. N. J. Am. Chem. Soc. 2002, 124, 7163–7169.
(b) Wei, Y.; Held, I.; Zipse, H. Org. Biomol. Chem. 2006, 4, 4223–4230.
(c) Li, X.; Liu, P.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc. 2008,
130, 13836–13837. (d) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am.
Chem. Soc. 2010, 132, 5030–5032.
(46) Because of the large size of the systems being modeled and the
presence of multiple small vibrational frequencies, zero-point vibrational
energy corrections and free energies, derived from frequency calcula-
tions using the rigid-rotor/harmonic oscillator approximation, were not
used to estimate enantioselectivities.
(47) Selected examples of correlations between experimental and
calculated enantioselectivities in catalytic reactions, see ref 21b and the
following: (a) Schneebeli, S. T.; Hall, M. L.; Breslow, R.; Friesner, R.
J. Am. Chem. Soc. 2009, 131, 3965–3973. (b) Kozlowski, M. C.; Dixon,
S. L.; Panda, M.; Lauri, G. J. Am. Chem. Soc. 2003, 125, 6614–6615. (c)
Donoghue, P. J.; Helquist, P.; Norrby, P.-O.; Wiest, O. J. Am. Chem. Soc.
2009, 131, 410–411.
(48) For comparisons of functionals for systems involving weak
noncovalent interactions, see refs 21a ,21b, 45c, and the following: (a)
Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 289–300. (b)
Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–167.
(49) Examples of C-F M interactions between fluoroarenes and
3 3 3
(34) For the binding of ammonium cation to pyrrole, an interaction
energy of 22.05 kcal/mol and a nearest distance of 2.1 Å from a proton of
ammonium to a carbon atom of the pyrrole were calculated at the
B3LYP/6-31G(d,p) level of theory:Zhu, W.-L.; Tan, X.-J.; Puah, C. M.;
Gu, J.-D.; Jiang, H.-L.; Chen, K.-X.; Felder, C. E.; Silman, I.; Sussman,
J. L. J. Phys. Chem. A 2000, 104, 9573–9580.
metal cation interactions in crystal structures: (a) Plenio, H. Chem. Rev.
1997, 97, 3363–3384. (b) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem.
Rev. 1990, 99, 89–115. (c) Bouwkamp, M. W.; Budzelaar, P. H. M.;
Gercama, J.; Morales, I. D. H. M.; de Wolf, J.; Meetsma, A.; Troyanov,
S. I.; Teuben, J. H.; Hessen, B. J. Am. Chem. Soc. 2005, 127,
14310–14319.
5074
dx.doi.org/10.1021/ja110842s |J. Am. Chem. Soc. 2011, 133, 5062–5075