4906
O. E. Hutt et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4904–4906
Figure 3. Docked configurations (Surflex-Dock, Tripos, Inc.) of epothilone A (a, left panel) and C25-benzyloxyepothilone C (b, right panel) are shown with MOLCAD (Tripos,
Inc.) electron density surfaces of the tubulin binding site (1TVK11), onto which hydrogen bond donor and acceptor regions have been mapped. Red areas represent hydrogen
bond donors; blue areas represent hydrogen bond acceptors; and gray indicates regions in which no hydrogen bonding takes place. Key ligand–receptor interactions are
shown in both pictures. In (a), hydrogen bonding occurs between the EpoA thiazole nitrogen and the imidazole NH of His227; between the EpoA C1 carbonyl and two amino
groups in Arg276; between the EpoA C3 hydroxyl and the Thr274 backbone carbonyl; between the EpoA C5 carbonyl and the Thr274 backbone NH; and between the EpoA C7
OH and Arg282 and Pro272. In the docked configuration of C25-benzyloxyepothilone C (b), all of these interactions disappear due to sterically driven ligand rearrangement,
except for a single hydrogen bond between the epothilone C1 carbonyl and Arg276. Validation was performed by comparing the docked configuration of EpoA to the
experiment (RMSD = 1.575 Å).
7. Wang, M.; Xia, X.; Kim, Y.; Hwang, D.; Jansen, J. M.; Botta, M.; Liotta, D. C.;
Snyder, J. P. Org. Lett. 1999, 1, 43.
8. Ojima, I.; Chakravarty, S.; Inoue, T.; Lin, S.; He, L.; Horwitz, S. B.; Kuduk, S. D.;
C25-benzyloxyepothiloneC usedfor docking was in good agreement
with the predicted solution conformation of EpoA and with the NMR
experimental results. When the C25-benzyloxy analog was docked
into the tubulin binding site (Fig. 3), as predicted, the OBn group
proved too large. The subsequent reorientation of the molecule in
the binding site disrupted two crucial hydrogen-bonding interac-
tions: between the thiazole nitrogen and the imidazole NH of
His227 and between the C7–OH and Arg282 and Pro272.
In conclusion, we have synthesized the first C25 functionalized
epothilone derivative21 as a model to test the suitability of this po-
sition for the placement of a photoreactive function. Unfortunately,
this analog was inactive due to the steric demand at the C25 posi-
tion, which disabled key hydrogen bonds resulting in significantly
weaker ligand binding.
Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4256.
9. He, L.; Jagtap, P. G.; Kingston, D. G. I.; Shen, H.-J.; Orr, G. A.; Horwitz, S. B.
Biochemistry 2000, 39, 3972.
10. Giannakakou, P.; Gussio, R.; Nogales, E.; Downing, K. H.; Zaharevitz, D.;
Bollbuck, B.; Poy, G.; Sackett, D.; Nicolaou, K. C.; Fojo, T. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 2904.
11. Nettles, J. H.; Li, H.; Cornett, B.; Krahn Joseph, M.; Snyder James, P.; Downing
Kenneth, H. Science 2004, 305, 866.
12. Reese, M.; Sanchez-Pedregal, V. M.; Kubicek, K.; Meiler, J.; Blommers, M. J. J.;
Griesinger, C.; Carlomagno, T. Angew. Chem., Int. Ed. 2007, 46, 1864.
13. Balog, A.; Meng, D.; Kamenecka, T.; Bertinato, P.; Su, D.-S.; Sorensen, E. J.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 1997, 35, 2801.
14. Schinzer, D.; Bauer, A.; Schieber, J. Chem. Eur. J. 1999, 5, 2492.
15. Reiff, E. A.; Nair, S. K.; Reddy, B. S. N.; Inagaki, J.; Henri, J. T.; Greiner, J. F.; Georg,
G. I. Tetrahedron Lett. 2004, 45, 5845.
16. Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc.
1990, 112, 8215.
17. Pilcher, A. S.; DeShong, P. J. Org. Chem. 1993, 58, 5130.
Acknowledgment
18. Dorman, G.; Prestwich, G. D. Trends Biotechnol. 2000, 18, 64.
19. Liu, Y.; Ali, S. M.; Boge, T. C.; Georg, G. I.; Victory, S.; Zygmunt, J.; Marquez, R. T.;
Himes, R. H. Comb. Chem. High Throughput Screening 2002, 5, 39.
20. Victory, S. F.; Vander Velde, D. G.; Jalluri, R. K.; Grunewald, G. L.; Georg, G. I.
Bioorg. Med. Chem. Lett. 1996, 6, 893.
The authors gratefully acknowledge financial support from the
National Institutes of Health: National Cancer Institute CA79641.
21. The spectroscopic data of all intermediates were in agreement with their
structures. Spectroscopic data for compound 3: 1H NMR (400 MHz, CDCl3)
d 7.37–7.29 (m, 5H), 6.97 (s, 1H), 6.56 (s, 1H), 5.47 (m 1H), 5.37 (m, 1H),
5.24 (d, J = 7.8 Hz, 1H), 4.55 (d, J = 11.9 Hz, 1H), 4.47 (d, J = 11.0 Hz, 1H),
4.04 (obscured br d, J = 7.0 Hz, 1H), 4.01 (m, 1H), 3.63 (dd, J = 2.9 Hz,
J = 9.2 Hz, 1H), 3.57 (dd, J = 3.6 Hz, J = 9.2 Hz, 1H), 3.23 (s, 1H), 3.18 (t,
J = 6.9 Hz, 1H), 2.70 (s and obscured m, 4H), 2.51 (d, J = 2.8 Hz, 2H), 2.49
(s, 1H), 2.22–2.15 (m, 2H), 2.10 (s, 3H), 1.98–1.90 (m, 1H), 1.70–1.50 (m,
4H), 1.35 (m, 1H), 1.31 (s, 3H), 1.20 (d, J = 6.8 Hz, 3H), 1.11 (s, 3H); 13C
References and notes
1. Höfle, G.; Bedorf, N.; Gerth, K.; Reichenbach, H. Offenlegungsschrift der
Bundesrepublik Deutschland 1993, DE 4138042, A1.
2. Gerth, K.; Bedorf, N.; Hoefle, G.; Irschik, H.; Reichenbach, H. J. Antibiot. 1996, 49,
560.
3. Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz,
M.; Lazarides, E.; Woods, C. M. Cancer Res. 1995, 55, 2325.
4. Altmann, K.-H. Curr. Pharm. Des. 2005, 11, 1595.
5. Fojo, T.; Menefee, M. Ann. Oncol. 2007, 18, v3.
6. Gupta, M. L., Jr.; Bode, C. J.; Georg, G. I.; Himes, R. H. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 6394.
NMR (100 MHz, CDCl3)
d 218.8, 170.7, 164.9, 152.1, 138.0, 137.9, 133.9,
128.4, 127.7, 127.6, 123.9, 119.8, 116.2, 78.9, 75.73, 73.4, 73.4, 72.0, 52.4,
45.1, 41.8, 38.7, 31.4, 28.3, 27.8, 25.2, 21.9, 21.8, 19.2, 15.4, 15.4; MS
(FAB) m/e 584.4 (M+H); ½a D20
ꢁ 23 (c 0.29, CHCl3).
ꢀ