8974
N. Girard et al. / Tetrahedron Letters 44 (2003) 8971–8974
3,5-dimethoxybenzyl group. Isolated yields: iodinated
7. (a) Anilkumar, G.; Nair, L. G.; Fraser-Reid, B. Org.
starting material: 37%, 11: 18%, 12: 5%.
14. Tvarosˇka, I.; Bleha, T. Adv. Carbohydr. Chem. Biochem.
Lett. 2000, 2, 2587–2589; (b) Udodong, U. E.; Madsen,
R.; Roberts, C.; Fraser-Reid, B. J. Am. Chem. Soc. 1993,
115, 7886–7887; (c) Mootoo, D. R.; Konradsson, P.;
Fraser-Reid, B. J. Am. Chem. Soc. 1989, 111, 8540–8542.
8. (a) Ogawa, T.; Beppu, K.; Nakabayashi, S. Carbohydr.
Res. 1981, 93, C6–C9; (b) Gass, J.; Strobl, M.; Loibner,
A.; Kosma, P.; Zaehringer, U. Carbohydr. Res. 1993, 244,
69–84.
1989, 47, 45–123.
15. Glycosyl perchlorates have been reported. See: (a)
Zhdanov, Y. A.; Korol’chenko, G. A.; Dorofeenko, G.
N.; Zhungietu, G. I. Dokl. Akad. Nauk SSSR 1964, 154,
861–863; (b) Igarashi, K.; Honma, T.; Irisawa, J. Carbo-
hydr. Res. 1970, 15, 329–337. We thank a referee for
suggesting the possible involvement of
perchlorate.
16. Carlsen, P. J. H.; Katsuki, T.; Martin, V. S.; Sharpless,
K. B. J. Org. Chem. 1981, 46, 3936–3938.
a glycosyl
9. Lemieux, R. U.; Morgan, A. R. Can. J. Chem. 1965, 43,
2190–2198. For its use in O-glycosylation reactions, see
Ref. 3.
1
10. NMR data for 7: H NMR (250 MHz, CDCl3, attribu-
17. NMR data for 15: 1H NMR (250 MHz, C6D6, attribu-
tions verified by H,H-COSY): l 1.56, 1.71, 1.82 (3s,
3×3H, 3 COCH3), 3.26, 3.69, 3.75 (3s, 3×3H, 3 OMe),
4.09 (dd, 1H, J5,6a=5.7, J6a,6b=11.9 Hz, H-6a), 4.34 (dd,
1H, J=5.7, 9 Hz, H-5), 4.58 (dd, 1H, J1,2=10.7, J2,3=2.8
Hz, H-2), 4.93 (dd, 1H, J5,6b=9.1 Hz, H-6b), 5.08 (d, 1H,
tions verified by H,H-COSY): l 2.06, 2.11, 2.12 (3s,
3×3H, 3 COCH3), 3.78, 3.80, 3.88 (3s, 3×3H, 3 OMe),
3.81 (m, 1H, H-2), 4.24 (t, 1H, J=7.2, H-5), 4.53 (dd,
1H, J5,6a=6.7, J6a,6b=11.6 Hz, H-6a), 4.71 (dd, 1H,
J5,6b=7.8 Hz, H-6b), 4.71 (d, 1H, J7a,7b=14.8 Hz, H-7a),
4.92 (d, 1H, H-7b), 5.00 (d, 1H, J3,4=2.9 Hz, H-4), 5.11
(d, 1H, J1,2=9.8 Hz, H-1), 5.42 (t, 1H, J=2.3 Hz, H-3),
6.33 (s, 1H, HAr); 13C NMR (62.9 MHz, CDCl3, attribu-
tions verified by H,C-correlation): l 21.2, 21.3 (Ac), 56.5
(OMe), 61.0 (C-6), 61.1 (OMe), 61.6 (OMe), 62.6 (C-1),
69.0 (C-3), 69.7 (2C, C-4, C-7), 73.6 (C-2), 75.1 (C-5),
103.1 (C-6%), 119.7 (C-2%), 131,7 (C-1%), 142.2, 153.8, 154.1
(C-3%,4%,5%), 169.7, 169.8, 171.0 (MeCOO). For 9: 1H
NMR (250 MHz, CDCl3, attributions verified by H,H-
COSY): l 2.02, 2.06, 2.14 (3s, 3×3H, 3 COCH3), 3.83,
3.86, 3.96 (3s, 3×3H, 3 OMe), 3.78–3.99 (m, 2H, H-2,
H-5), 4.15 (dd, 1H, J5,6a=2.5, J6a,6b=12.2 Hz, H-6a),
4.23 (dd, 1H, J5,6b=5.9 Hz, H-6b), 4.62 (s, 1H, H-1), 4.66
(d, 1H, J7a,7b=15.5 Hz, H-7a), 4.96 (d, 1H, H-7b), 5.18
(dd, 1H, J2,3=3.7, J3,4=10.2 Hz, H-3), 5.39 (t, 1H,
J=9.8 Hz, H-4), 6.34 (s, 1H, H-6%).
J
3,4=3.1 Hz, H-4), 5.30 (d, 1H, J1,2=10.7 Hz, H-1), 5.61
(t, 1H, J=2.7 Hz, H-3), 7.52 (s, 1H, H-6%); 13C NMR
(62.9 MHz, C6D6, attributions verified by H,C-correla-
tion): l 20.8. 21.0 (Ac), 56.1, 61.2, 62.2 (3 OMe), 60.2
(C-6), 63.8 (C-1), 67.8 (C-3), 69.3 (C-4), 74.9 (C-2), 75.6
(C-5), 110.7 (C-6%), 120.5 (C-2%), 127.4 (C-1%), 149.9, 152.8,
154.8 (C-3%,4%,5%), 163.9 (C-7), 169.4, 169.6 (MeCOO).
18. Komori, T.; Itoh, Y. J. Antibiot. 1985, 38, 544–546.
19. The NMR spectrum of 16 was not complicated by slow
rotation about the C1–CAr linkage, and could be recorded
at room temperature, as observed by Kumazawa et al. for
a similar C-aryl a-mannoside.11 The product was con-
taminated by an unseparable by-product; identifiable
NMR signals appear to indicate that this product could
be a small amount of the cis-epimer of 16.
20. (a) Suzuki, K.; Matsumoto, T. In Recent Progress in the
Chemical Synthesis of Antibiotics and Related Microbial
Products; Lukacs, G., Ed.; Springer Verlag: Berlin, 1993;
Vol. 2, pp. 352–403; (b) Jaramillo, C.; Knapp, S. Synthe-
sis 1993, 1–20.
11. For the related epimerization of an a-C-mannosylated
phloroacetophenone derivative, see: Kumazawa, T.; Sato,
S.; Matsuba, S.; Onodera, J.-I. Carbohydr. Res. 2001,
332, 103–108.
12. Compound 5 undergoes rapid 2-O-debenzylation in the
presence of hard, oxophilic Lewis acids.
13. The reaction gave iodinated starting material as the
major product, an indication that the reaction of the
aromatic residue with IDCP is faster than that of the
pentenyl group. Iodination took place at C-2 of the
21. a-C-Aryl glycosides have been obtained under certain
conditions. See for example Ref. 11 and (a) Stewart, A.
O.; Williams, R. M. J. Am. Chem. Soc. 1985, 107, 4289–
4296; (b) Cai, M.-S.; Qiu, D.-X. Carbohydr. Res. 1989,
191, 125–129; (c) Schmidt, R. R.; Effenberger, G. Liebigs
Ann. Chem. 1987, 825–831.