Inorganic Chemistry
ARTICLE
axial position results in a changeover of the mechanism of NO
binding to the iron(III) center in comparison with the mechan-
ism observed for nitrosylation of five-coordinate porphyrin
complexes. Furthermore, the fact that NO is able to substitute
the CNꢀ ligand in FeIII(TMPS)(CN)2, further supports that NO
can be a better ligand than cyanide also in iron(III) hemopro-
teins. Accordingly, the mechanism of CNꢀ substitution by NO
proposed in the present study can shed more light on the mecha-
nism of the recovery process in the treatment of cyanide inhi-
bition of cytochrome c oxidase.
Inorg. Chim. Acta 1998, 277, 242–246. (c) Balch, A. L.; Noll, B. C.; Safari,
N. Inorg. Chem. 1993, 32, 2901–2905. (d) Schappacher, M.; Fischer, J.;
Weiss, R. Inorg. Chem. 1989, 28, 389–390. (e) Hada, M. J. Am. Chem. Soc.
2004, 126, 486–487. (f) Ikezaki, A.; Nakamura, M. Inorg. Chem. 2002,
41, 2761–2768.
(12) Scheidt, W. R.; Haller, K. J.; Hatano, K. J. Am. Chem. Soc. 1980,
102, 3017–3021.
(13) (a) Stochel, G. Coord. Chem. Rev. 1992, 114, 269–295. (b)
Stasicka, Z.; Wasielewska, E. Coord. Chem. Rev. 1997, 159, 271–294. (c)
Oszajca, J.; Stochel, G.; Wasielewska, E.; Stasicka, Z.; Gryglewski, R. J.;
Jakubowski, A.; Cieslik, K. J. Inorg. Biochem. 1998, 69, 121–127.
(14) (a) Beasley, D. M.; Glass, W. I. Occup. Med. (Lond.) 1998,
48, 427–431. (b) Cumings, T. F. Occup. Med. (Lond.) 2004, 54, 82–85.
(c) Brenner, M.; Mahon, S. B.; Lee, J.; Kim, J.; Mukai, D.; Goodman, S.;
Kreuter, K. A.; Ahdout, R.; Mohammad, O.; Sharma, V. S.; Blackledge,
W.; Boss, G. R. J. Biomed. Opt. 2010, 15, 017001. (d) Broderick, K. E.;
Potluri, P.; Zhuang, S.; Scheffler, I. E.; Sharma, V. S.; Pilz, R. B.; Boss,
G. R. Exp. Biol. Med. (Maywood, NJ, U. S.) 2006, 231, 641–649. (e)
Bhattacharya, R.; Tulsawani, R. J. Environ. Biol. 2009, 30, 515–520.
(15) (a) van Eldik, R.; Palmer, D. A.; Schmidt, R.; Kelm, H. Inorg.
Chim. Acta 1981, 50, 131–135. (b) van Eldik, R.; Gaede, W.; Wieland, S.;
Kraft, J.; Spitzer, M.; Palmer, D. A. Rev. Sci. Instrum. 1993, 64, 1355–1357.
(16) Spitzer, M.; Garting, F.; van Eldik, R. Rev. Sci. Instrum. 1988,
59, 2092–2093.
(17) Silver, J.; Taies, J. A. Inorg. Chim. Acta 1989, 159, 231–235.
(18) Wang, J.-T.; Yeh, H. J. C.; Johnson, D. F. J. Am. Chem. Soc. 1978,
100, 2400–2405.
(19) Goff, H.; Morgan, L. O. Inorg. Chem. 1976, 15, 2069–2076.
(20) Arifuku, F.; Ujimoto, K.; Kurihara, H. Bull. Chem. Soc. Jpn. 1986,
59, 149–154.
(21) (a) Kobayashi, N. Inorg. Chem. 1985, 24, 3324–3330. (b)
Kobayashi, N.; Koshiyama, N.; Osa, T.; Kuwana, T. Inorg. Chem.
1983, 22, 3608–3614.
(22) Wolak, M.; van Eldik, R. Chem.—Eur. J. 2007, 13, 4873–4883.
(23) Ascenzi, P.; di Masi, A.; Gullotta, F.; Mattu, M.; Ciaccio, C.;
Coletta, M. Biochem. Biophys. Res. Commun. 2010, 393, 196ꢀ200 and
references therein.
’ AUTHOR INFORMATION
Corresponding Authors
*E-mail: vaneldik@chemie.uni-erlangen.de (R.v.E.), stochel@
chemia.uj.edu.pl (G.S.).
’ ACKNOWLEDGMENT
This work was supported by the International Ph.D. Study
Program at the Faculty of Chemistry, Jagiellonian University,
within the Foundation for Polish Science MPD Program cofi-
nanced by the European Regional Development Fund. The
research was carried out with equipment purchased with financial
support from the European Regional Development Fund within
the framework of the Polish Innovation Economy Operational
Program (contract no. POIG.02.01.00-12-023/08). A.F. and R.v.
E. gratefully acknowledge continued financial support from the
Deutsche Forschungsgemeinschaft.
’ REFERENCES
(1) (a) Koshland, D. E. Science 1992, 258, 1861–1865. (b) Culotta,
E.; Koshland, D. E. Science 1992, 258, 1862–1865.
(2) (a) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993ꢀ118
and references therein. (b) Laverman, L. E.; Ford, P. C. J. Am. Chem. Soc.
2001, 123, 11614ꢀ11622 and references therein. (c) Ford, P. C.;
Laverman, L. E.; Lorkovic, I. M. Adv. Inorg. Chem. 2003, 54, 203–257
and references therein.
(3) (a) Franke, A.; Stochel, G.; Jung, C.; van Eldik, R. J. Am. Chem.
Soc. 2004, 126, 4181ꢀ4191 and references therein. (b) Theodoridis, A.;
van Eldik, R. J. Mol. Catal. A: Chem. 2004, 224, 197–205. (c) Hoshino,
M.; Ozawa, K.; Seki, H.; Ford, P. C. J. Am. Chem. Soc. 1993,
115, 9568–9575. (d) Hoshino, M.; Kogure, M. J. Phys. Chem. 1989,
93, 5478–5484. (e) Wanat, A.; Wolak, M.; Orzel, L.; Brindell, M.;
van Eldik, R.; Stochel, G. Coord. Chem. Rev. 2002, 229, 37–49.
(4) Laverman, L. E.; Wanat, A.; Oszajca, J.; Stochel, G.; Ford, P. C.;
van Eldik, R. J. Am. Chem. Soc. 2001, 123, 285–293.
(5) (a) Jee, J.-E.; Eigler, S.; Jux, N.; Zahl, A.; van Eldik, R. Inorg.
Chem. 2007, 46, 3336–3352. (b) Jee, J.-E.; Wolak, M.; Balbinot, D.; Jux,
N.; Zahl, A.; van Eldik, R. Inorg. Chem. 2006, 45, 1326–1337. (c) Jee,
J.-E.; Eigler, S.; Hampel, F.; Jux, N.; Wolak, M.; Zahl, A.; Stochel, G.; van
Eldik, R. Inorg. Chem. 2005, 44, 7717–7731.
(24) Sybert, D. W.; Mofat, K.; Gibson, Q. H. J. Biol. Chem. 1976,
251, 45–52.
(25) Brancaccio, A.; Cutruzzolz, F.; Allocatelli, C. T.; Brunori, M.;
Smerdon, S. J.; Wilkinson, A. J.; Dou, Y.; Keenan, D.; Ikeda-Saito, M.;
Brantley, R. E.; Olson, J. S. J. Biol. Chem. 1994, 35, 13843–13853.
(26) Dou, Y.; Olson, J. S.; Wilkinson, A. J.; Ikeda-Saito, M. Biochem-
istry 1996, 35, 7107–7113.
(27) (a) Giacometti, G. M.; Da Ros, A.; Antonini, A.; Brunori, M.
Biochemistry 1975, 14, 1584–1585. (b) Giacometti, G. M.; Ascenzi, P.;
Bolognesi, M.; Brunori, M. J. Mol. Biol. 1981, 146, 363–374. (c)
Bolognesi, M.; Coda, A.; Frigerio, F.; Gatti, G.; Ascenzi, P.; Brunori,
M. J. Mol. Biol. 1991, 213, 621–625. (d) Mattevi, A.; Gatti, G.; Coda, A.;
Rizzi, M.; Ascenzi, P.; Brunori, M.; Bolognesi, M. J. Mol. Recognit. 1991,
4, 1–6.
(28) Marques, H. M.; Brown, K. L.; Jacobsen, D. W. J. Biol. Chem.
1988, 263, 12378–12383.
(29) Lambier, A. M.; Heremans, K.; Dunford, H. B. Biophys. Chem.
1983, 18, 195–201.
(30) Kitamura, Y.; Ioth, T. J. Solution Chem. 1987, 16, 715–725.
(31) Goldberg, R. N.; Kishore, N.; Lennen, R. J. Phys. Chem. Ref.
Data 2002, 31, 231–370.
(6) Wolak, M.; van Eldik, R. J. Am. Chem. Soc. 2005, 127
13312–13315.
(7) Franke, A.; Roncaroli, F.; van Eldik, R. Eur. J. Inorg. Chem. 2007,
6, 773ꢀ798 and references therein.
(32) By using the concentration of free cyanide to calculate the reaction
and activation parameters for reaction 4 makes them independent of the
ionization of HCN (ΔHHCN = 45 kJ molꢀ1, ΔSHCN = ꢀ22 J molꢀ1 Kꢀ1
and ΔVHCN = ꢀ6.5 cm3 molꢀ1). Since [CNꢀ] depends on [Hþ] (eq 6),
changes in pH with temperature and pressure were taken into account.
According to the thermodynamic data for the ionization of the buffers,
namely, TAPS (ΔH = 40 kJ molꢀ1, ΔS = ꢀ26 J molꢀ1 Kꢀ1 and ΔV =
0.5 cm3 molꢀ1) and CHES (ΔH = 39 kJ molꢀ1, ΔS = ꢀ47 J molꢀ1 Kꢀ1
and ΔV = 1 cm3 molꢀ1), the [Hþ] calculated at particular temperatures
were used to calculate [CNꢀ], whereas changes in pH with pressure
(8) Schmeisser, M.; van Eldik, R. Inorg. Chem. 2009, 48, 7466–7475.
(9) (a) Ikezaki, A.; Ikeue, T.; Nakamura, M. Inorg. Chim. Acta 2002,
335, 91–99. (b) Nakamura, M.; Ikeue, T.; Ikezaki, A.; Ohgo, Y.; Fujii, H.
Inorg. Chem. 1999, 38, 3857–3862. (c) Nakamura, M.; Ikeue, T.; Fujii,
H.; Yoshimura, T. J. Am. Chem. Soc. 1997, 119, 6284–6291.
(10) Li, J.; Noll, B. C.; Schulz, C. E.; Scheidt, W. E. Inorg. Chem.
2007, 46, 2286–2298.
(11) (a) Patra, R.; Rath, S. P. Inorg. Chem. Commun. 2009,
12, 515–519. (b) Bartczak, T. J.; Wolowiec, S.; Latos-Grazynski, L.
3423
dx.doi.org/10.1021/ic1023345 |Inorg. Chem. 2011, 50, 3413–3424