Table 3 Synthesis of vinyl and fluorovinyl triazoles
triazoles, and can potentially find broad applicability in
organic synthesis as well as in high-throughput methodology.
This work was supported by PSC CUNY awards.
Infrastructural support was provided by NIH RCMI Grant
5G12 RR03060. We thank Prof Michael Green (CCNY) for
advice on the DFT computational analysis and Dr Andrew
Poss (Honeywell) for a sample of NFSI.
Entry Carbonyl
X= BT-sulfone Yield,a E/Z ratiob
1
2
H
H
3
5
9 : 73%, 33/67
10 : 85%, 15/85
Notes and references
1 (a) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565;
(b) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 633.
2 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.
3 For reviews see: (a) H. C. Kolb, M. G. Finn and K. B. Sharpless,
Angew. Chem., Int. Ed., 2001, 40, 2004; (b) M. V. Gil,
M. J. Arevalo and O. Lopez, Synthesis, 2007, 1589.
3
4
H
H
5
5
11 : 65%, 72/28
12 : 44%, 83/17
5
6
H
H
3
5
13 : 67%, 86/14
14 : 41%, 77/23
4 Fluorine-Containing Synthons, ed. V. A. Soloshonok, American
Chemical Society, Washington, DC, 2005.
5 For a review see: B. Zajc and R. Kumar, Synthesis, 2010,
1822.
7
8
H
H
3
5
15 : 71%, 72/28
16 : 31%, 7/93
6 (a) A. K. Ghosh and B. Zajc, Org. Lett., 2006, 8, 1553; (b) B. Zajc and
S. Kake, Org. Lett., 2006, 8, 4457; (c) M. He, A. K. Ghosh and
B. Zajc, Synlett, 2008, 999; (d) M. del Solar, A. K. Ghosh and B. Zajc,
J. Org. Chem., 2008, 73, 8206; (e) A. K. Ghosh, S. Banerjee, S. Sinha,
S. B. Kang and B. Zajc, J. Org. Chem., 2009, 74, 3689;
(f) A. K. Ghosh and B. Zajc, J. Org. Chem., 2009, 74, 8531.
7 (a) D. Chevrie, T. Lequeux, J. P. Demoute and S. Pazenok,
Tetrahedron Lett., 2003, 44, 8127; (b) E. Pfund, C. Lebargy,
J. Rouden and T. Lequeux, J. Org. Chem., 2007, 72, 7871;
(c) D. A. Alonso, M. Fuensanta, E. Gomez-Bengoa and
C. Najera, Adv. Synth. Catal., 2008, 350, 1823; (d) C. Calata,
J.-M. Catel, E. Pfund and T. Lequeux, Tetrahedron, 2009, 65, 3967;
(e) C. Calata, E. Pfund and T. Lequeux, J. Org. Chem., 2009, 74,
9399; (f) Y. Zhao, W. Huang, L. Zhu and J. Hu, Org. Lett., 2010,
12, 1444; (g) G. K. S. Prakash, A. Shakhmin, M. Zibinsky,
I. Ledneczki, S. Chacko and G. A. Olah, J. Fluorine Chem.,
2010, 131, 1192; (h) N. Allendorfer, M. Es-Sayed, M. Nieger and
S. Brase, Synthesis, 2010, 3439.
9c
H
F
5
6
17 : 59%
10
18 : 47%, 26/74
11
12
F
F
4
6
19 : 72%, 14/86
20 : 90%, 7/93
13
F
6
21 : 76%, 38/62
14
15
16
F
F
F
4
6
4
22 : 60%, 15/85
23 : 57%, 19/81
24 : 68%, 34/66
8 W.-Q. Fan and A. R. Katritzky, in Comprehensive Heterocyclic
Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven,
Elsevier Science, Oxford, 1996, vol. 4, p. 1.
17
18c
F
F
6
4
25 : 63%, 36/64
26 : 87%
9 J.-P. Begue and D. Bonnet-Delpon, Bioorganic and Medicinal
Chemistry of Fluorine, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
10 R. J. Thibault, K. Takizawa, P. Lowenheilm, B. Helms,
J. L. Mynar, J. M. J. Frechet and C. J. Hawker, J. Am. Chem.
Soc., 2006, 128, 12084.
a
b
Yields of isolated, purified products. Relative ratio of diastereomers
determined in the crude reaction mixture either by 1H or by 19F NMR.
c
Conditions: LHMDS, THF, 0 1C.
11 For reviews see: (a) P. R. Blakemore, J. Chem. Soc., Perkin Trans.
1, 2002, 2563; (b) K. Plesniak, A. Zarecki and J. Wicha, Top. Curr.
Chem., 2007, 275, 163; (c) C. Aıssa, Eur. J. Org. Chem., 2009, 1831.
12 C. Bonini, L. Chiummiento and V. Videtta, Synlett, 2005, 3067.
13 V. Aucagne and D. A. Leigh, Org. Lett., 2006, 8, 4505.
14 (a) N. J. Agard, J. A. Prescher and C. R. Bertozzi, J. Am. Chem. Soc.,
2004, 126, 15046; (b) J. M. Baskin, J. A. Preschner, S. T. Laughlin,
N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli and
C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 16793;
(c) E. M. Sletten and C. R. Bertozzi, Angew. Chem., Int. Ed., 2009, 48,
6974; (d) F. Schoenebeck, D. H. Ess, G. O. Jones and K. N. Houk,
J. Am. Chem. Soc., 2009, 131, 8121; (e) K. Chenoweth, D. Chenoweth
and W. A. Goddard III, Org. Biomol. Chem., 2009, 7, 5255.
15 For a review see: Y.-h. Lam, S. J. Stanway and V. Gouverneur,
Tetrahedron, 2009, 65, 9905.
16 D. Gree and R. Gree, Tetrahedron Lett., 2010, 51, 2218.
17 (a) F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev,
L. Noodleman, K. B. Sharpless and V. V. Fokin, J. Am. Chem.
Soc., 2005, 127, 210; (b) V. O. Rodionov, V. V. Fokin and
M. G. Finn, Angew. Chem., Int. Ed., 2005, 44, 2210;
(c) M. Ahlquist and V. V. Fokin, Organometallics, 2007, 26, 4389.
18 (a) P. Liu and E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123, 10772;
(b) B. K. Albrecht and R. M. Williams, Proc. Natl. Acad. Sci.
U. S. A., 2004, 101, 11949.
gave the corresponding vinyl triazoles in 59% and 87% yields,
respectively (entries 9 and 18).
In summary, facile and previously unprecedented access to
vinyl and fluorovinyl triazoles is possible from the bifunctional
propargyl and fluoropropargyl benzothiazolyl sulfones. The
fluoropropargyl derivative is readily obtained via metalation–
fluorination of propargyl benzothiazolyl sulfone. Synthesis of
triazoles from TMS-protected propargyl and fluoropropargyl
sulfones can be accomplished in a single step by in situ TMS
deprotection and Cu-catalyzed azide–alkyne ligation (68–93%
yields). In competitive experiments a higher reactivity of the
fluoropropargyl sulfone 2 was observed, compared to the
protio analogue. DFT calculations show lower electron
density at the terminal alkynyl carbon atom in 2a compared
to the protio analogue. This may be a contributor to the higher
reactivity of the fluoropropargyl sulfone in the azide–alkyne
ligation. This highly modular approach offers rapid access to
diversely functionalized N-substituted vinyl and fluorovinyl
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3891–3893 3893