K. P. Guerra, C. A. M. Afonso
FULL PAPER
13C NMR (400 MHz, CDCl3): δ = 26.73, 35.32, 69.86, 126.42,
127.93, 128.57, 141.41, 147.80, 159.59, 209.77 ppm.
Fundo Europeu de Desenvolvimento Regional (FEDER) for finan-
cial support (SFRH/BPD/28038/2006 and PTDC/QUI-QUI/
099389/2008) and the Portuguese Nuclear Magnetic Resonance
Network (Instituto Superior Técnico) for NMR spectroscopy.
2-[Hydroxy(4-methoxyphenyl)methyl]-2-cyclopenten-1-one
(16-
iv):[9b,9e,15,17] Yellow solid, Rf = 0.25 (silica; EtOAc/hexane, 1:1). 1H
NMR (400 MHz, CDCl3): δ = 2.441–2.463 (m, 2 H), 2.508–2.590
(m, 2 H), 3.36–3.37 (d, J = 4 Hz, OH), 5.506 (s, 1 H), 6.869–6.898
(m, 2 H), 7.268–7.2309 (m, 3 H) ppm. 13C NMR (400 MHz,
CDCl3): δ = 26.727, 35.417, 55.409, 69.740, 114.010, 127.804,
133.647, 148.052, 159.228, 209.783 ppm.
[1] a) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003,
103, 811–892; b) G. Masson, C. Housseman, J. Zhu, Angew.
Chem. Int. Ed. 2007, 46, 4614–4628; c) Y.-L. Shi, M. Shi, Eur.
J. Org. Chem. 2007, 18, 2905–2916; d) D. Basavaiah, K. V. Rao,
R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581–1588; e) M. Shi,
X.-G. Lui, Org. Lett. 2008, 10, 1043–1046; f) V. Singh, S. Batra,
Tetrahedron 2008, 64, 4511–4574; g) V. Declerck, J. Martinez,
F. Lamaty, Chem. Rev. 2009, 109, 1–48; h) D. Basavaiah, B. S.
Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447–5674; i) W.
Yin, S. Min, Chin. Sci. Bull. 2010, 55, 1699–1711; j) J. Mansilla,
J. M. Saá, Molecules 2010, 15, 709–734.
[2] a) C. H. Heathcock in Asymmetric Synthesis (Ed.: J. D. Mor-
rison), Academic, New York, 1984, vol. 3, pp. 112–212; b)
D. A. Evans, J. V. Nelson, T. R. Taber, Top. Stereochem. 1982,
13, 1; c) C. H. Heathcock in Comprehensive Organic Synthesis
(Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, vol.
2, pp. 133–238; d) C. Palomo, M. Oiarbide, J. M. Garcia,
Chem. Eur. J. 2002, 8, 36–44.
[3] a) T. D. Machajewski, C.-H. Wong, Angew. Chem. Int. Ed.
2000, 39, 1352–1374; b) P. I. Dalko, L. Moisan, Angew. Chem.
Int. Ed. 2004, 43, 5138–5175; c) B. List, Adv. Synth. Catal.
2004, 346, 1021; d) M. J. Gaunt, C. C. C. Johansson, A.
McNally, N. T. Vo, Drug Discovery Today 2007, 12, 8–27; e)
R. M. de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007,
2575–2600; f) A. Dondoni, A. Massi, Angew. Chem. Int. Ed.
2008, 47, 4638–4660; g) S. Bertelsen, K. A. Jørgensen, Chem.
Soc. Rev. 2009, 38, 2178–2189.
[4] a) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; b) K. C. Nico-
laou, T. Montagnon, S. A. Snyder, Chem. Commun. 2003, 551–
564; c) H. Pellissier, Tetrahedron 2006, 62, 1619–1665; d) H.-C.
Guo, J.-A. Ma, Angew. Chem. Int. Ed. 2006, 45, 354–366; e) D.
Enders, C. Grondal, M. R. M. Hüttl, Angew. Chem. Int. Ed.
2007, 46, 1570–1581.
[5] a) M. Marigo, S. Bertelsen, A. Landa, K. A. Jørgensen, J. Am.
Chem. Soc. 2006, 128, 5475–5479; b) S. Brandau, E. Maerten,
K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 14986–14991;
c) H. Li, J. Wang, H. Xie, L. Zu, W. Jiang, E. N. Duesler, W.
Wang, Org. Lett. 2007, 9, 965–968; d) D. Enders, M. R. M.
Hüttl, G. Raabe, J. W. Bats, Adv. Synth. Catal. 2008, 350, 267–
279.
[6] a) P. T. Kaye, M. A. Musa, X. W. Nocanda, R. S. Robinson,
Org. Biomol. Chem. 2003, 1, 1133–1138; b) B. Lesch, S. Bräse,
Angew. Chem. Int. Ed. 2004, 43, 115–118; c) M. J. Lee, D. Y.
Park, K. Y. Lee, J. N. Kim, Tetrahedron Lett. 2006, 45, 1833–
1837; d) A. Carlone, S. Cabrera, M. Marigo, K. A. Jørgensen,
Angew. Chem. Int. Ed. 2007, 46, 1101–1104; e) X. Meng, Y.
Huang, R. Chen, Chem. Eur. J. 2008, 14, 6852–6856; f) J.
Alemán, A. Núñez, L. Marzo, V. Marcos, C. Alvarado, J. L. G.
Ruano, Chem. Eur. J. 2010, 16, 9453–9456.
[7] a) J. K. Gallos, K. I. Stathakis, S. S. Kotoulas, A. E. Koumbis,
J. Org. Chem. 2005, 70, 6884–6890; b) J. H. Cho, D. L. Bernard,
R. W. Sidwell, E. R. Kern, C. K. Chu, J. Med. Chem. 2006, 49,
1140–1148; c) P. Dübon, M. Schelwies, G. Helmchen, Chem.
Eur. J. 2008, 14, 6722–6733; d) U. Jahn, J.-M. Galano, T. Dur-
and, Angew. Chem. Int. Ed. 2008, 47, 5894–5955; e) V. B. Kurt-
eva, C. A. M. Afonso, Chem. Rev. 2009, 109, 6809–6857; f) W.
Ye, M. He, S. V. Schneller, Tetrahedron Lett. 2009, 50, 7156–
7158.
[8] a) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L.
Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841–5883; b)
G.-N. Ma, J.-J. Jiang, M. Shi, Y. Wei, Chem. Commun. 2009,
45, 5496–5514.
2-[Hydroxy(4-nitrophenyl)methyl]-2-cyclopenten-1-one
(16-
vi):[9b,9e,15,18] Slightly yellow crystalline solid, Rf = 0.44 (silica;
EtOAc/hexane, 1:1), 1H NMR (400 MHz, CDCl3): δ = 2.46–2.48
(m, 2 H), 2.61–2.63 (m, 2 H), 3.76 (s, 1 H), 5.66 (s, 1 H), 7.302–
7.309 (m, 1 H), 7.564–7.586 (d, J = 8.8 Hz, 2 H), 8.186–8.208 (d,
J = 8.8 Hz, 2 H) ppm. 13C NMR (400 MHz, CDCl3): δ = 26.96,
35.26, 69.06, 123.84, 127.21, 146.81, 147.57, 148.65, 160.06,
209.47 ppm.
2-[1-Hydroxy(2-furyl)methyl]-2-cyclopenten-1-one (16-vii):[14c] Yel-
low solid, Rf = 0.28 (silica; EtOAc/hexane, 1:1). 1H NMR
(400 MHz, CDCl3): δ = 2.47–2.50 (m, 2 H), 2.65 (m, 2 H), 3.450–
3.468 (d, J = 7.2 Hz, 1 H), 5.58 (s, 1 H), 6.28–6.29 (d, J = 4.4 Hz,
1 H), 6.33–6.34 (m, 1 H), 7.38 (m, 1 H), 7.52 (m, 1 H) ppm. 13C
NMR (400 MHz, CDCl3): δ = 26.92, 35.21, 64.01, 107.48, 110.52,
142.63, 144.84, 153.82, 160.27, 209.38 ppm.
2-[(Hydroxy(naphthalene-1-yl)methyl)]-2-cyclopenten-1-one
(16-
ix):[19] Colorless oil, Rf = 0.725 (silica, Et2O/CH2Cl2, 1:1). 1H
NMR (400 MHz, CDCl3, TMS, 25 °C): δ = 2.410–2.466 (m, 2 H,
C3HC4H2C5), 2.494–2.560 (br. m, 2 H, C4C5H2C=O), 3.688–3.698
(d, J = 4 Hz, 1 H, C2CHOH), 5.723 (s, 1 H, C2CHOH), 7.271–
7.276 (t, 1 H, C2C3HC4H2), 7.464–7.484 (d, J = 8 Hz, 3 H, βCH,
Ar), 7.8.15–7.939 (m, 4 H, αCH, Ar) ppm. 13C NMR (400 MHz,
CDCl3, TMS, 25 °C):
δ =
26.780, (C3HC4H2C5), 35.348
(C4H2C5H2C=O), 69.994 (C2CHOH), 124.462, 125.249, 126.131,
126.304 (βArCH), 127.772, 128.176, 128.391 (αAr CH), 133.142,
133.348, 138.802 (Ar C), 147.742 (C=OC2CH2), 159.794
(C2C3HC4H2), 209.798 (C=O) ppm. Spectral data were assigned on
the basis of 2D HMQC and 2D COSY NMR spectroscopy.
syn-2,5-Bis[hydroxy(4-nitrophenyl)methyl]cyclopent-2-enone (17-vi):[9b]
Pale yellow solid, m.p. 81–83 °C, Rf = 0.39 (silica; EtOAc/hexane,
1:2). 1H NMR (400 MHz, CDCl3, TMS, 25 °C): δ = 2.252–2.482
(m, 1 H, C3HHC4HC5), 2.636–2.689 (m, 1 H, 1 H, C3HHC4HC5),
2.785–2.803 (m, 1 H, C4H2C5HC=O), 3.444–3.478 (t, 1 H, OH),
3.502–3.698 (br. m, 1 H, OH), 5.481–5.512 (d, J = 12.4 Hz, 1 H,
C5HCHCAr), 5.675, (s, 1 H, C2CHCAr), 7.402–7.420 (m, 1 H,
C2C3HC4H2), 7.481–7.585 (m, 4 H, Ar), 8.135–8.196 (m, 4 H,
Ar) ppm. 13C NMR (400 MHz, CDCl3, TMS, 25 °C): δ = 27.673
(C3HC4H2C5H), 53.421 (C4H2C5HC=O), 69.023, (C5HCHCAr),
70.806 (C2CHCAr), 123.929, 126.375, 127.224, 127.368 (4 CH Ar),
146.632, 146.945, 147.458, 148.249 (4 C Ar), 149.665 (C=OC2C3H),
161.323 (C2C3HC4H2), 208.489 (C=O) ppm. The spectroscopic
data were assigned on the basis of 2D HMQC and 2D COSY
NMR spectroscopy.
Supporting Information (see footnote on the first page of this arti-
1
cle): Chromatograms of the reaction optimization experiments, H
1
NMR spectral details of the tandem reaction, and H and 13C 2D
NMR spectroscopic data of all isolated compounds together with
GS–MS spectra.
Acknowledgments
[9] a) G. Li, H.-X. Wei, J. J. Gao, T. Caputo, Tetrahedron Lett.
2000, 41, 1–5; b) M. Shi, Y.-M. Xu, G.-L. Zhao, X.-F. Wu, Eur.
J. Org. Chem. 2002, 3666–3679; c) A. Patra, S. Batra, B. S.
The authors are grateful to Fundação para a Ciência e a Tecnolo-
gia [Programa Operational Ciência e Inovação (POCI) 2010] and
2378
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 2372–2379